Почему развивается резистентность к разным антибиотикам. Устойчивость к антибиотикам: почему бактерии становятся все более живучими Причинами приобретения микробами устойчивости к антибиотикам является

В процессе лечения многие сталкиваются с такой проблемой, как резистентность организма к действию антибиотиков. Для многих такое заключение медиков становится реальной проблемой при лечении разного рода заболеваний.

Что такое резистентность?

Резистентность - это устойчивость микроорганизмов к действию антибиотиков. В организме человека в совокупности всех микроорганизмов встречаются устойчивые к действию антибиотика особи, но их количество минимальное. Когда антибиотик начинает действовать, вся популяция клеток гибнет (бактерицидный эффект) или вовсе прекращает свое развитие (бактериостатический эффект). Устойчивые клетки к антибиотикам остаются и начинают активно размножаться. Такая предрасположенность передается по наследству.

В организме человека вырабатывается определенная чувствительность к действию определенного рода антибиотиков, а в некоторых случаях и полная замена звеньев обменных процессов, что дает возможность не реагировать микроорганизмам на действие антибиотика.

Также в некоторых случаях микроорганизмы и сами могут начать вырабатывать вещества, которые нейтрализуют действие вещества. Такой процесс носит название энзиматической инактивации антибиотиков.

Те микроорганизмы, которые имеют резистентность к определенному типу антибиотиков, могут, в свою очередь, иметь устойчивость к подобным классам веществ, схожих по механизму действия.

Так ли опасна резистентность?

Резистентность - это хорошо или плохо? Проблема резистентности в данный момент приобретает эффект «эры постантибиотиков». Если ранее проблему устойчивости или невосприятия антибиотика решали путем создания более сильного вещества, то на данный момент такой возможности уже нет. Резистентность - это проблема, к которой нужно относиться серьезно.

Самая главная опасность резистентности — это несвоевременное поступление в организм антибиотиков. Организм попросту не может немедленно среагировать на его действие и остается без должной антибиотикотерапии.

Среди основных ступеней опасности можно выделить:

  • тревожные факторы;
  • глобальные проблемы.

В первом случае есть большая вероятность проблемы развития резистентности из-за назначения таких групп антибиотиков, как цефалоспорины, макролиды, хинолоны. Это довольно сильные антибиотики широкого спектра действия, которые назначаются для лечения опасных и сложных заболеваний.

Второй тип — глобальные проблемы - представляет собой все негативные стороны резистентности, среди которых:

  1. Увеличенные сроки госпитализации.
  2. Большие финансовые затраты на лечение.
  3. Большой процент смертности и заболеваемости у людей.

Такие проблемы особенно ярко выражены при совершении путешествий в страны Средиземноморья, но в основном зависят от разновидности микроорганизмов, которые могут попасть под воздействие антибиотика.

Резистентность к антибиотикам

К основным факторам, приводящим к развитию резистентности к антибиотикам, относят:

  • питьевая вода низкого качества;
  • антисанитарные условия;
  • бесконтрольное применение антибиотиков, а также их использование на животноводческих фермах для лечения животных и роста молодняка.

Среди основных подходов к решению проблем по борьбе с инфекциями при резистентности к антибиотикам ученые приходят к:

  1. Разработке новых видов антибиотиков.
  2. Изменение и модификация химических структур.
  3. Новые разработки препаратов, которые будут направлены на клеточные функции.
  4. Ингибирование вирулентных детерминант.

Как снизить возможность развития резистентности к антибиотикам?

Главным условием является максимальное устранение селективного воздействия антибиотиков на бактериологический ход.

Чтобы побороть резистентность к антибиотикам, необходимо соблюдение некоторых условий:

  1. Назначение антибиотиков только при четкой клинической картине.
  2. Использование простейших антибиотиков при лечении.
  3. Применение кратких курсов антибиотикотерапии.
  4. Взятие микробиологических проб на эффективность действия конкретной группы антибиотиков.

Неспецифическая резистентность

Под этим термином принято понимать так называемый врожденный иммунитет. Это целый комплекс факторов, которые определяют восприимчивость или невосприимчивость к действию того или иного препарата на организм, а также антимикробные системы, которые не зависят от предварительного контакта с антигеном.

К таким системам можно отнести:

  • Система фагоцитов.
  • Кожные и слизистые организма.
  • Естественные эозинофилы и киллеры (внеклеточные уничтожители).
  • Системы комплимента.
  • Гуморальные факторы в острой фазе.

Факторы неспецифической резистентности

Что такое фактор резистентности? К основным факторам неспецифической резистентности относят:

  • Все анатомические барьеры (кожные покровы, мерцательный эпитилий).
  • Физиологические барьеры (Ph, температурные показатели, растворимые факторы— интерферон, лизоцим, комплемент).
  • Клеточные барьеры (прямой лизис чужеродной клетки, эндоцитоз).
  • Воспалительные процессы.

Основные свойства неспецифических факторов защиты:

  1. Система факторов, которая предшествует еще до встречи с антибиотиком.
  2. Нет строгой специфической реакции, так как антиген не распознан.
  3. Нет запоминания чужеродного антигена при вторичном контакте.
  4. Эффективность продолжается в первые 3—4 суток до включения в действие адаптивного иммунитета.
  5. Быстрая реакция на попадание антигена.
  6. Формирование быстрого воспалительного процесса и иммунного ответа на антиген.

Подводя итоги

Значит, резистентность - это не очень хорошо. Проблема резистентности на данный момент занимает довольно серьезное место среди методов лечения антибиотикотерапии. В процессе назначения определенного типа антибиотиков врачом должен быть проведен весь спектр лабораторных и ультразвуковых исследований для постановки точной клинической картины. Только при получении этих данных можно переходить к назначению антибиотикотерапии. Многие специалисты рекомендуют назначать для лечения сперва легкие группы антибиотиков, а при их неэффективности переходить к более широкому спектру антибиотиков. Такая поэтапность поможет избежать возможного развития такой проблемы, как резистентность организма. Также не рекомендуется заниматься самолечением и употреблять бесконтрольно лекарственные препараты в лечении людей и животных.

Антибиотики используются в клинической практике более 70 лет. Благодаря их применению было спасено миллионы людей. Несмотря на это, и сегодня в XXI веке смертность от инфекционных заболеваний остается высокой. Причиной этому является развитие устойчивости (резистентности) к антибиотикам.

Резистентность к антибиотикам бывает:

  • Природной.
    Когда в микроорганизме отсутствует мишень для действия антибиотика или она недоступна.
    Примеры:
    — β-лактамные антибиотики не действуют на микоплазмы. Мишенью β-лактамов являются ферменты локализованные в стенках бактериальных клеток, которые отсутствуют у микоплазм (у них нет клеточных стенок). Поэтому Mycoplasma spp. имеет природную устойчивостью к β-лактамам;
    — У большинства грамотрицательных бактерий клеточная стенка непроницаема для макролидов, поэтому они обладают природной устойчивостью к этому классу антибиотиков.

Приобретенной .
Эта устойчивость развивается вследствие мутаций микроорганизмов либо при передаче генов от резистентных бактерий к чувствительным бактериям.

Мутации бактериальных клеток приводят к спонтанному появлению резистентных бактериальных клеток. При применении антибиотиков происходит уничтожение чувствительных бактериальных клеток и размножение устойчивых бактерий.
Вследствие этого может образоваться популяция состоящая целиком из резистентных микроорганизмов.

Основным источником генетической информации в бактериальной клетке является хромосома, которая в большинстве случаев образована единственной замкнутой циркуляторной молекулой ДНК. Содержащие в ней гены обеспечивают жизнедеятельность бактерии практически в любых обстоятельствах.

В тоже время, во многих (возможно, что и во всех) бактериях имеются дополнительные молекулы ДНК, получившие название плазмид. По размеру они меньше хромосомной ДНК, не связаны с ней и обычно воспроизводятся отдельно от нее. Гены, которые переносятся плазмидами, чаще всего не являются жизненно необходимыми для выживания бактерий в обыкновенных условиях, но могут придавать клеткам-носителям преимущества в борьбе за существование в некоторых особых обстоятельствах.

Полезные свойства, которые передаются плазмидами, включают в себя:

  • Фертильность: способность к конъюгации и передаче генетической информации другим бактериям;
  • Резистентность к антибиотикам: большинство случаев устойчивости к антибиотикам, которые встречаются в клинических условиях, опосредованы плазмидами;
  • Способность к выработке бактериоцинов – белков, ингибирующих другие бактерии, которые являются экологическими конкурентами данного микроорганизма;
  • Выработку токсинов;
  • Иммунитет к некоторым бактериофагам;
  • Способность использовать необычные сахара и другие субстраты в качестве продуктов питания.

Плазмиды различаются по своим размерам, составу и совместимости. Совместимые плазмиды могут сосуществовать в одной и той же бактерии-хозяине, в то время как несовместимые – нет.

Третьим источником генетической информации в бактериальной клетке являются бактериофаги (или просто – фаги). Бактериофаги – это вирусы, инфицирующие бактерии. Большинство фагов способно атаковать сравнительно небольшое число штаммов определенных бактерий, то есть имеет узкий и весьма специфический круг потенциальных жертв.

Различают две основные группы фагов:

  • Вирулентные фаги, которые неминуемо уничтожают любую инфицированную ими бактерию, в результате из каждой лизированной клетки высвобождается ряд новых частичек фагов;
  • Умеренные (лизогенетические) фаги, которые могут либо лизировать, либо лизогенировать инфицированные бактериальные клетки.
    При лизогении геномы бактерий и умеренного фага сосуществуют в виде единой хромосомы, в которой ДНК хромосомы бактерии и передается по наследству дочерним клеткам. Такой «спящий» фаг получил название профага.
    Тем не менее, на этой стадии некоторые гены профага могут экспрессироваться и придавать новые свойства (в частности, резистентность к антибиотикам) клетке-хозяину. На определенном этапе (во время одного из каждых несколько тысяч делений бактерии) профаг вступает в литический цикл с последующим разрушением бактерии-хозяина и высвобождением новых фаговых частичек в окружающую среду.

Передача генов, кодирующих резистентность, от резистентных бактерий чувствительным микроорганизмам, является более эффективным механизмом приобретения резистентности.

Такая передача осуществляется тремя путями:

  • При трансформации свободная ДНК погибшей антибиотикорезистентной бактериальной клетки захватывается из окружающей среды антибиотикочувствительной бактерией-реципиентом;
  • Трансдукция включает в себя случайную инкорпорацию бактериальной ДНК частичкой бактериофага во время литического цикла фага. При этом ДНК может быть как хромосомной, так и плазмидной. В последующем частичка фага переносит бактериальную ДНК в следующую клетку, которая она инфицирует;
  • Коньюгация предполагает физический контакт между двумя бактериями.
    В то время, когда два микроорганизма прикрепляются один к другому, происходит односторонняя передача ДНК от клетки-донора клетке реципиенту. Способность к конъюгации зависит от соответствующих плазмид или транспозонов в клетке-доноре.

Наличие перечисленных механизмов передачи генетической информации означает, что не только мутации и селекция определяют эволюцию бактерий. Например, ранее чувствительная к антибиотикам бактерия может при конъюгации приобрести плазмиду, содержащую гены, кодирующие резистентность к нескольким различным антибиотикам. В результате в течение короткого промежутка времени в данной экологической нише может сформироваться пул полирезистентных микроорганизмов.

Основные механизмы, с помощью которых развивается приобретенная устойчивость к антибиотикам:

  • Разрушение или модификация антибиотика;
  • Меняется мишень для действия антибиотика;
  • Уменьшается проницаемость клеточной стеки для антибиотика;
  • Активное выведение антибиотика из бактериальной клетки;
  • Приобретается новый метаболический путь, на который не влияет антибиотик.

Наиболее важным из этих механизмов является разрушение антибиотика бактериальными клетками (микроорганизмы способны выделять ферменты разрушающие антибиотик). Пример этому служит развитие резистентности к β-лактамным антибиотикам, широко применяемым в клинической практике.

Бактериальные ферменты, разрушающие β-лактамазные антибиотики, получили название β-лактамаз. В связи со способностью гидролиза тех или иных β-лактамных антибиотиков различают пенициллиназы, цефолоспориназы, карбапенемазы и т. д.

Если гены, кодирующие выработку β-лактамаз, находятся в хромосомах, то начинают распространяться резистентные клоны бактерий.
Плазмидная локализация генов, кодирующих выработку β-лактамаз, обуславливает быстрое внутри и межвидовое распространение резистентности.

Практически все грамотрицательные бактерии вырабатывают β-лактамазы (гены локализуются в хромосомах). Опосредованные плазмидами β-лактамазы широко распространены не только среди грамотрицательных микроорганизмов, но и у стафилококков.

Синтезируемые бактериями β-лактамазы могут быть чувствительными и нечувствительными к ингибиторам β-лактамаз.
Ингибиторы β-лактамаз это вещества, которые связываются с β-лактамазами и подавляют их активность.
Плазмидные β-лактамазы грамотрицательных бактерий чувствительны к ингибиторам, а хромосомные, — как правило нет. Некоторые хромосомные β-лактамазы грамотрицательных бактерий эффективно гидролизуют практически все β-лактамные антибиотики, включая карбапенемы.

Также бактериальные клетки могут выделять ферменты модифицирующие антибиотик. В результате этого антибиотик утрачивает возможность связываться со своими мишенями в бактериальной клетке и теряет свою эффективность. Примером служит развитие резистентности к аминогликозидам у грамотрицательных бактерий семейства Enterobacteriacea, когда антибиотики инактивируются в результате ацетилирования, аденилирования или фосфорилирования.

Резистентность может развиваться, когда изменяется мишень для действия антибиотика. Примером этого вида устойчивости может быть резистентность S.pneumoniae к пенициллину.

Существует механизм резистентности, когда антибиотик активно удаляется (выкачивается) с клетки с помощью насосов. Примером служит приобретение устойчивости к тетрациклинам. Тетрациклины, попадая вовнутрь клетки, изгоняются из нее наружу и не успевают связаться со своими мишенями (рибосомами).

Классическим образцом резистентности, опосредованной действием подобных насосов, является разветвленная перекрестная устойчивость некоторых штаммов Pseudomonas auruginosa к β-лактамам, фторхинолонам, тетрациклинам и хлорамфениколу.
Долгое время она приписывалась нарушению проницаемости бактерий для этих антимикробных препаратов. В настоящее время установлено, что она связана с оператором MexAmexBopr M, кодирующим систему изгнания указанных антибиотиков из микробной клетки. Если инактивировать эту систему, то синегнойные палочки становятся высокочувствительными ко всем перечисленным препаратам.

Резистентность может развиваться при нарушении проницаемости бактерий для антибиотиков. Например β-лактамные антибиотики проникают в грамотрицательные бактерии через поры посредством диффузии. Уменьшение числа или радиуса пор приводит к снижению чувствительности бактерий к этим антибиотикам.

Также резистентность может возникнуть, если у бактерий сформируется новый метаболический путь, на который не влияет антибиотик. Например, S. аureus способен образовать дополнительный белок, который полноценно синтезирует клеточную стенку стафилококка и вызывает устойчивость к антистафилококковым пенициллинам (оксациллину и метициллину и), и ко всем β-лактамным антибиотикам.

Описанные механизмы отнюдь не исчерпывают тему приобретения и передачи антибиотикорезистентности. Они дают лишь некоторое представление о способности мира микробов приспосабливаться к изменившимся условиям внешней среды и, прежде всего, — к применению антибиотиков.

Рекомендации по применению антибактериальной терапии для различных инфекций опираются на результатах микробиологических исследований. Такие исследования дают возможность отслеживать чувствительность антибиотиков к ключевым возбудителям заболевания, отслеживать динамику изменения чувствительности, вносить коррективы в стандарты лечения.

На практике различают резистентность возбудителей внебольничных и госпитальных инфекций. При небольшом уровне резистентности эффективность антибактериальной терапии не снижается. Однако лечение становится неэффективным при превышении определенного порогового уровня. Для внебольничных пневмококков пороговый уровень примерно 20-30% резистентных штаммов.

Для госпитальных возбудителей, в результате более широкого применения антибиотиков, формируются высокорезистентные штаммы, которые нередко устойчивы к антибиотикам нескольких классов.
Выраженность и характер резистентности зависит от профиля отделения и традиций использования антибиотиков в конкретном отделении больницы. При этом резистентность будет отличаться не только в разных стационарах, но и в разных отделениях одной и той же больницы.
Поэтому выработка универсальных рекомендаций по терапии госпитальных инфекций вряд ли возможна и должна строиться с учетом микробиологического мониторинга за ситуацией, сложившейся в конкретном отделении.

Распространению резистентных бактерий во многом способствует в медицине.

Неадекватное использование антибиотиков может быть связано как:

  • С действием врача. Назначение этих медикаментов при и лихорадочных состояниях неинфекционной природы, нерациональная антибиотикотерапия (по длительности, дозировкам, кратности введения, выбору конкретного препарата и т. д.).
  • С действием пациента (несоблюдение полного курса , самолечение остатками не употребленных лекарств и т.д.).

Однако антибиотики используют не только в медицине. Широкое применение они нашли в сельском хозяйстве и животноводстве, причем не только для лечения и профилактики инфекций, но и в качестве стимуляторов роста (животноводство). В последнем случае они обычно назначаются в субтерапевтических дозах. Несомненно, подобное применение – прямая дорога к возникновению и распространению резистентных бактерий.

Серьезную проблему представляет использование антибиотиков и в сельском хозяйстве при обработке антибиотиками больших площадей занятых сельскохозяйственными растениями с применением авиации и других технических средств. Дальнейшее их распространение происходит как среди обслуживающего персонала, так и через пищевую цепочку.

Сложность и многообразие механизмов устойчивости бактерий к антибиотикам стимулировали разработку различных мер по ограничению распространения и преодолению резистентности.

Перспективными подходами к преодолению резистентности являются:

  • Защита известных антибиотиков от разрушения ферментами бактерий или от удаления их из бактериальной клетки посредством мембранных насосов;
  • Применение иных антибиотиков выбранной группы. Например, уровень устойчивости большинства возбудителей госпитальных инфекций к гентамицину в несколько раз выше, чем к другому аминогликозиду антибиотику – амикацину;
  • Применение комбинации антибиотиков;
  • Проведение целевой и узконаправленной антибактериальной терапии;
  • Синтез новых соединений, относящихся к известным классам антибиотиков;
  • Поиск принципиально новых классов антибактериальных препаратов.

Литература: Инфекции и антибиотики И. Г. Березняков. 2004 год. Харьков.

В лекции рассмотрены основные методы определения чувствительности in vitro микроорганизмов к антимикробным препаратам (диско-диффузионный, Е-тестов, методы разведения). Отражены подходы к эмпирическому и этиотропному назначению антибиотиков в клинической практике. Обсуждены вопросы интерпретации результатов определения чувствительности с клинической и микробиологической точек зрения.

В настоящее время в клинической практике существуют два принципа назначения антибактериальных препаратов: эмпирическое и этиотропное. Эмпирическое назначение антибиотиков основано на знаниях о природной чувствительности бактерий, эпидемиологических данных о резистентности микроорганизмов в регионе или стационаре, а также результатах контролируемых клинических исследований. Несомненным преимуществом эмпирического назначения химиопрепаратов является возможность быстрого начала терапии. Кроме того, при таком подходе исключаются затраты на проведение дополнительных исследований.

Однако при неэффективности проводимой антибактериальной терапии, при нозокомиальных инфекциях, когда затруднительно предположить возбудителя и его чувствительность к антибиотикам стремятся проводить этиотропную терапию. Этиотропное назначение антибиотиков предполагает не только выделение возбудителя инфекции из клинического материала, но и определение его чувствительности к антибиотикам. Получение корректных данных возможно только при грамотном выполнении всех звеньев бактериологического исследования: от взятия клинического материала, транспортировки его в бактериологическую лабораторию, идентификации возбудителя до определения его чувствительности к антибиотикам и интерпретации полученных результатов.

Вторая причина, обусловливающая необходимость определения чувствительности микроорганизмов к антибактериальным препаратам - это получение эпидемиологических данных о структуре резистентности возбудителей внебольничных и нозокомиальных инфекций. В практике эти данные используют при эмпирическом назначении антибиотиков, а также для формирования больничных формуляров.

Методы определения чувствительности к антибиотикам

Методы определения чувствительности бактерий к антибиотикам делятся на 2 группы: диффузионные и методы разведения.

При определении чувствительности диско-диффузионным методом на поверхность агара в чашке Петри наносят бактериальную суспензию определенной плотности (обычно эквивалентную стандарту мутности 0,5 по McFarland) и затем помещают диски, содержащие определенное количество антибиотика. Диффузия антибиотика в агар приводит к формированию зоны подавления роста микроорганизмов вокруг дисков. После инкубации чашек в термостате при температуре 35 о -37 о С в течение ночи учитывают результат путем измерения диаметра зоны вокруг диска в миллиметрах ().

Рисунок 1. Определение чувствительности микроорганизмов диско-диффузионным методом.

Определение чувствительности микроорганизма с помощью Е-теста проводится аналогично тестированию диско-диффузионным методом. Отличие состоит в том, что вместо диска с антибиотиком используют полоску Е-теста, содержащую градиент концентраций антибиотика от максимальной к минимальной (). В месте пересечения эллипсовидной зоны подавления роста с полоской Е-теста получают значение минимальной подавляющей концентрации (МПК).

Рисунок 2. Определение чувствительности микроорганизмов с помощью Е-тестов.

Несомненным достоинством диффузионных методов является простота тестирования и доступность выполнения в любой бактериологической лаборатории. Однако с учетом высокой стоимости Е-тестов для рутинной работы обычно используют диско-диффузионный метод.

Методы разведения основаны на использовании двойных последовательных разведений концентраций антибиотика от максимальной к минимальной (например от 128 мкг/мл, 64 мкг/мл, и т.д. до 0,5 мкг/мл, 0,25 мкг/мл и 0,125 мкг/мл). При этом антибиотик в различных концентрациях вносят в жидкую питательную среду (бульон) или в агар. Затем бактериальную суспензию определенной плотности, соответствующую стандарту мутности 0,5 по MсFarland, помещают в бульон с антибиотиком или на поверхность агара в чашке. После инкубации в течение ночи при температуре 35 о -37 о С проводят учет полученных результатов. Наличие роста микроорганизма в бульоне (помутнение бульона) или на поверхности агара свидетельствует о том, что данная концентрация антибиотика недостаточна, чтобы подавить его жизнеспособность. По мере увеличения концентрации антибиотика рост микроорганизма ухудшается. Первую наименьшую концентрацию антибиотика (из серии последовательных разведений), где визуально не определяется бактериальный рост принято считать минимальной подавляющей концентрацией (МПК) . Измеряется МПК в мг/л или мкг/мл ().

Рисунок 3. Определение значения МПК методом разведения в жидкой питательной среде.

Интерпретация результатов определения чувствительности

На основании получаемых количественных данных (диаметра зоны подавления роста антибиотика или значения МПК) микроорганизмы подразделяют на чувствительные, умеренно резистентные и резистентные (). Для разграничения этих трех категорий чувствительности (или резистентности) между собой используют так называемые пограничные концентрации (breakpoint) антибиотика (или пограничные значения диаметра зоны подавления роста микроорганизма).



Рисунок 4. Интерпретация результатов определения чувствительности бактерий в соответствии со значениями МПК.

Пограничные концентрации не являются неизменными величинами. Они могут пересматриваться, в зависимости от изменения чувствительности популяции микроорганизмов. Разработкой и пересмотром критериев интерпретации занимаются ведущие специалисты (химиотерапевты и микробиологи), входящие в специальные комитеты. Одним из них является Национальный комитет по клиническим лабораторным стандартам США (National Committee for Clinical Laboratory Standards - NCCLS). В настоящее время стандарты NCCLS признаны в мире и используются как международные для оценки результатов определения чувствительности бактерий при многоцентровых микробиологических и клинических исследованиях.

Существуют два подхода к интерпретации результатов определения чувствительности: микробиологический и клинический. Микробиологическая интерпретация основана на анализе распределения значений концентраций антибиотика, подавляющих жизнеспособность бактерий. Клиническая интерпретация основана на оценке эффективности антибактериальной терапии.

Чувствительные микроорганизмы (susceptible)

Клинически к чувствительным относят бактерии (с учетом параметров, полученных in vitro ), если при лечении стандартными дозами антибиотика инфекций, вызываемых этими микроорганизмами, наблюдают хороший терапевтический эффект.

При отсутствии достоверной клинической информации подразделение на категории чувствительности базируется на совместном учете данных, полученных in vitro , и фармакокинетики, т.е. на концентрациях антибиотика, достижимых в месте инфекции (или в сыворотке крови).

Резистентные микроорганизмы (resistant)

К резистентным (устойчивым) относят бактерии, когда при лечении инфекции, вызванной этими микроорганизмами, нет эффекта от терапии даже при использовании максимальных доз антибиотика. Такие микроорганизмы имеют механизмы резистентности.

Микроорганизмы c промежуточной резистентностью (intermediate)

Клинически промежуточную резистентность у бактерий подразумевают в случае, если инфекция, вызванные такими штаммами, может иметь различный терапевтический исход. Однако лечение может быть успешным, если антибиотик используется в дозировке, превышающей стандартную, или инфекция локализуется в месте, где антибактериальный препарат накапливается в высоких концентрациях.

С микробиологической точки зрения к бактериям с промежуточной резистентностью относят субпопуляцию, находящуюся в соответствии со значениями МПК или диаметра зон, между чувствительными и резистентными микроорганизмами. Иногда штаммы с промежуточной резистентностью и резистентные бактерии объединяют в одну категорию резистентных микроорганизмов.

Необходимо отметить, что клиническая интерпретация чувствительности бактерий к антибиотикам является условной, поскольку исход терапии не всегда зависит только от активности антибактериального препарата против возбудителя. Клиницистам известны случаи, когда при резистентности микроорганизмов, по данным исследования in vitro , получали хороший клинический эффект. И наоборот, при чувствительности возбудителя может наблюдаться неэффективность терапии.

В определенных клинических ситуациях, когда недостаточно результатов исследования чувствительности обычными методами, определяют минимальную бактерицидную концентрацию.

Минимальная бактерицидная концентрация (МБК) - наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени.

Значение МБК используют при терапии антибиотиками, обладающими бактериостатическим действием, или при отсутствии эффекта от антибактериальной терапии у особой категории больных. Частными случаями для определения МБК могут быть, например, бактериальный эндокардит, остеомиелит или генерализованные инфекции у пациентов с иммунодефицитными состояниями.

В заключение хотелось бы отметить, что на сегодняшний день не существует методов, которые позволили бы с абсолютной достоверностью прогнозировать клинический эффект антибиотиков при лечении инфекционных болезней. Однако, данные результатов определения чувствительности могут служить хорошим ориентиром клиницистам для выбора и коррекции антибактериальной терапии.


Таблица 1. Критерии интерпретации чувствительности бактерий

Резистентность к антибиотикам – это способность патогенных бактерий проявлять устойчивость к воздействию терапевтических концентраций антибактериальных препаратов. Устойчивость к антибиотикам разделяют на врожденную и приобретенную. Под врожденной резистентностью подразумевают отсутствие у бактерии мишени, на которую может действовать применяемый антибиотик, слишком низкую проницаемость бактериальной мембраны для препарата, способность инактивировать лекарство при помощи ферментов либо активно выводить его из бактериальной клетки.

Приобретенная устойчивость возникает как следствие мутации возбудителя, благодаря которой он может свободно переносить концентрации антибиотика, достаточные для инактивации других бактерий данного вида.

Стремительный рост устойчивости бактерий к антибиотикам представляет серьезную угрозу для здоровья и жизни людей. По статистике ВОЗ, вероятность смертельного исхода заболевания у пациента, инфицированного метициллино-резистентными штаммами стафилококка (MRSA), на 70% выше, чем у больного, инфицированного обычными, чувствительными к антибиотикам штаммами.

Во многих странах наблюдается тенденция к росту резистентности E. Coli (основного возбудителя инфекций мочевыводящих путей) к фторхинолонам и цефалоспоринам. Все чаще регистрируются случаи устойчивости бактерий к препаратам резерва для данной инфекции (карбапенемы для Klebsiella pneumonia, 3-е поколение цефалоспоринов для гонореи) и т.д. То есть, те заболевания, которые на протяжении многих лет эффективно лечились антибактериальными препаратами сегодня, снова представляют опасность для населения.

В некоторых случаях, тест на чувствительность к антибиотикам показывает частичную или полную устойчивость к большинству «классических» для данной инфекции антибиотиков.

Такая неутешительная картина связана с частым нерациональным и необоснованным применением противомикробных средств. Многие пациенты покупают лекарства не по назначению врача, а по рекомендации друзей, фармацевтов в аптеке, после просмотра рекламы или просто вспомнив, что когда-то этот препарат уже помогал. Также, у многих существуют «любимые» лекарства, которые принимаются по несколько дней при первых признаках заболевания.

Важно понимать, что самоназначение антибиотиков, самостоятельная коррекция назначенных дозировок, кратности приема и длительности курса способствует формированию и распространению бактерий с приобретенной устойчивостью к антибиотикам.

Как развивается устойчивость к противомикробным препаратам?

Вторичная (приобретенная) резистентность к антибиотикам развивается за счет спонтанных мутаций в геноме микробной клетки после контакта с противомикробным средством. Важной особенностью данных мутаций является их способность «запоминаться» бактериями и передаваться следующим поколения патогенов. Это способствует быстрому распространению устойчивых штаммов в окружающей среде.

Степень резистентности (сниженная чувствительность к антибиотикам или полная устойчивость), а также скорость ее развития зависит от видов и штаммов бактерий.

Быстрее всего под действием антибиотиков мутируют:

  • стафилококки (грамположительные кокки);
  • эшерихии (грамотрицательные бактерии);
  • микоплазмы (внутриклеточные возбудители);
  • протей (грам- бактерии);
  • (грамотрицательные бактерии).

Достаточно редко встречаются антибиотикорезистентные стрептококки группы А, клостридии, сибироязвенные и гемофильные палочки.

Среди механизмов формирования устойчивости, на данный момент наиболее важными считают:

  • ферментную инактивацию антибиотика;
  • модификацию молекул-мишеней в микробной клетке;
  • способность возбудителей активно выводить антибиотик (эффлюкс);
  • снижение проницаемости микробной мембраны для лекарства.

Поскольку активное выведение и нарушение проницаемости основаны на ограничении доступа антибиотика в бактериальную клетку, их часто объединяют в один механизм резистентности.

Что значит чувствительность к антибиотикам

В связи с ростом резистентности ко многим противомикробным средствам, определение чувствительности микроорганизмов к антибиотикам позволяет проводить противомикробную терапию максимально рационально и эффективно.

Итак, чувствительность к антибиотикам. Всех возбудителей инфекционно-воспалительных болезней можно разделить на:

  • чувствительные;
  • малочувствительные;
  • полностью устойчивые.

Если рост и размножение бактерий на питательной среде подавляются терапевтическими дозировками антибиотиков, то бактерии считаются чувствительными. Малочувствительные штаммы, реагируют только на максимальные дозировки лекарственного средства.

Резистентными к антибиотику считаются патогены, которые ингибируются только критически высокими дозами антибактериальных средств, достичь которых можно исключительно в условиях лаборатории, но не в человеческом организме.

Как определить чувствительность к антибиотикам?

Этиотропное назначение противомикробных препаратов основывается на выделении возбудителя с дальнейшим определением чувствительности к антибиотикам. Этот анализ позволяет получить эпидемиологические показатели устойчивости патогенных микроорганизмов в определенном регионе, а также изучить структуру внутрибольничных и внебольничных инфекций.

При проведении пробы на чувствительность к антибиотикам, необходимо соблюдать определенный алгоритм действий и четко соблюдать все звенья бактериологической диагностики.

Этапность исследования состоит из:

  • забора материала;
  • доставки в лабораторию;
  • посевов на специальные среды;
  • выделения вида и штамма возбудителя;
  • изучения чувствительности к противомикробным средствам.

Важно понимать, что достоверные данные анализа можно получить только при правильном выполнении всех этапов диагностики.

Методы определения чувствительности бактерий к антибиотикам

Чувствительность к антибиотикам исследуется при помощи:

  • диффузии (диски с противомикробными препаратами или E-тесты);
  • разведения (для этого используют агар или жидкие питательные среды (бульон)).

Как сделать пробу на антибиотик?

Наиболее популярным качественным методом диагностики считается диффузия в агар с использованием метода дисков. Для того, что бы изучить чувствительность к антибиотикам при помощи диффузии с дисками, необходимо засеять исследуемым патогенном питательную среду с агаром и поместить сверху диски с антибактериальными препаратами. Далее, чашка Петри с образцами выдерживается в термостате при температуре от 35 до 37 0 С в течение суток. По истечению 24 часов оценивают зоны ингибирования роста бактерий вокруг дисков. Данный метод диагностики является качественным, то есть диффузия-дисками определяет — чувствителен возбудитель к антибиотику или нет.

Для оценивания степени чувствительности измеряют зону ингибирования роста. При полной резистентности бактерии к антибиотику зона задержки полностью отсутствует.

О слабой чувствительности говорит задержка до 1.5 сантиметра. Препараты с такими показателями являются неэффективными для эрадикации исследуемого возбудителя.

Умеренно эффективными (показатели стандартной чувствительности) являются антибиотики с задержкой роста от 1.5 до 2.5 сантиметров. О высокой чувствительности свидетельствует зона ингибирования роста более 2.5 сантиметров.

Кроме диско-диффузного метода могут применяться полоски E-тестов. Алгоритм действий аналогичен предыдущему, только вместо пропитанных противомикробным средством дисков используют полоску с Е-тестом, содержащую разметку с градиентом концентраций изучаемого антибиотика (от максимума к минимуму).

Полоски с Е-тестом

Важно помнить, что диффузные методы неэффективны для выявления МКП (минимальные концентрации подавления) полипептидных антибиотиков с плохой диффузией в агар. То есть для полимиксина, ристомицина и т.д. предпочтительнее использовать серийное разведение.

Методы разведения

Количественные методы используются для выявления МКП и минимальных концентраций бактерицидного действия. То есть, с их помощью можно определить минимальный уровень антибиотика, который будет предотвращать видимый рост бактерий.

При помощи методов разведения можно рассчитать необходимую дозу препарата (терапевтическая концентрация в крови должна значительно превышать МКП). При использовании метода серийного разведения, вначале готовится основной р-р, со строго определенной концентрацией антибиотика в специальной питательной среде. Из него готовятся все последующие разведенные р-ры.

Далее, в каждую пробирку (чашку Петри) с разведениями добавляют изучаемую культуру возбудителей. После этого, все посевы подвергаются инкубации в термостате при температуре 37 0 С на одни сутки. По окончанию инкубации оценивают результаты и выявляют МКП по отсутствию зоны роста (в чашке Петри) или помутнения (среды в пробирке).

Оценивание результатов проводится при помощи специальных таблиц с стандартными показателями диаметров ингибирования роста и МКП для резистентных (для этих штаммов указывается только зона ингибирования роста), малочувствительных и чувствительных.

Под резистентностью микроорганизмов к антибактериальным средствам понимают сохранение их способности к размножению в присутствии таких концентраций этих веществ, которые создаются при введении терапевтических доз.

Еще в начале развития химиотерапии при изучении действия трипанового синего на трипаносомы П. Эрлих замечал появление резистентных форм микроорганизмов к данному красителю. По мере расширения арсенала химиопрепаратов увеличивалось число сообщений о таких наблюдениях. Так, после начала ши­рокого применения сульфаниламидных препаратов было отмече­но появление многочисленных штаммов бактерий, которые легко выдерживали терапевтические концентрации данных препаратов.

Антибиотикорезистентные бактерии возникли и стали распро­страняться сразу после внедрения антибиотиков в клиническую практику. Как тревожный сигнал прозвучали сообщения о появлении и распространении пенициллинорезистентных стафилококков. В настоящее время повсеместно возрастает число лекар­ственно-устойчивых форм бактерий. Так, частота обнаружения пенициллиноустойчивых стафилококков доходит до 90-98 %, стрептомициноустойчивых - 60-70 % и выше, резистентность шигелл к ампициллину достигает 90 % и более, к тетрациклину и стрептомицину - 54 % и т. д. Устойчивость к антибиотикам чаще возникает у бактерий, реже у других микроорганизмов (спирохет, риккетсий, хламидий, микоплазм, дрожжеподобных грибов).

Механизмы резистентности микроорганизмов к антибиотикам и другим химиотерапевтическим препаратам сложны и разнооб­разны. Главным образом они связаны со следующими причи­нами:

1) превращением активной формы антибиотика в неактив­ную форму путем ферментативной инактивации и модификации;

2) утратой проницаемости клеточной стенки для определенного химиотерапевтического препарата;

3) нарушениями в системе специфического транспорта данного препарата в бактериальную клетку;

4) возникновением у микроорганизмов альтернативного пути образования жизненно важного метаболита, заменяющего основной путь, блокированный препаратом.

Типы устойчивости бактерий к антибиотикам

Механизмы резистентности могут быть подразделены на пер­вичные и приобретенные .

К первичным механизмам относятся те, которые связаны с отсутствием «мишени» для действия данного препара­та; к приобретенным - изменением «мишени» в результате модификаций, мутаций, рекомбинаций. В первом случае речь идет о естественной (видовой) резистентности, например у микоплазм к пенициллину из-за отсутствия у них клеточной стенки. Однако чаще всего резистентность к химиотерапевтическим препаратам, в том числе антибиотикам, приобретается микробными клетками с генами резистентности (г-гены), которые они получают в процессе своей жизнедеятельности от других клеток данной или соседней популяции. При этом наиболее эффективно и с высокой частотой r-гены передаются плазмидами и транспозонами (см. 6.2). Один транспозон передает резистент­ность только к одному препарату. Плазмиды могут нести не­сколько транспозонов, контролирующих резистентность к разным химиотерапевтическим препаратам, в результате чего формиру­ется множественная резистентность бактерий к различным препаратам.

Устойчивость к антибиотикам бактерий, грибов и простейших также возникает в результате мутаций в хромосомных генах, контролирующих образование структурных и химических компо­нентов клетки, являющихся «мишенью» для действия препарата. Так, например, резистентность дрожжеподобных грибов родаCandida к нистатину и леворину может быть связана с мутацион­ными изменениями цитоплазматическои мембраны.

Биохимические механизмы резистентности бактерий к бета-лактамным антибиотикам разнообразны. Они могут быть связаны с индуцибельным синтезом бета-лактамазы, изменениями в пенициллиносвязывающих белках и других «мишенях». Описано око­ло 10 пенициллиносвязывающих белков - ферментов, участвую­щих в синтезе бактериальной клеточной стенки. Кроме того, ре­зистентность к ампициллину и карбенициллину можно объяснить снижением проницаемости наружной мембраны грамотрицательных бактерий. Развитие того или другого типа резистент­ности определяется химической структурой антибиотика и свойст­вами бактерий. У одного и того же вида бактерий могут сущест­вовать несколько механизмов резистентности.

Механизм быстрого развития резистентности к новым цефалоспоринам, устойчивым к действию цефалоспориназ, зависит от образования комплекса антибиотика с индуцибельными латамазами, При этом гидролиза антибиотика не происходит. Такой ме­ханизм обнаружен у протеев.

Биохимические механизмы приобретенной резистентности к аминогликозидным антибиотикам и левомицетину связаны со способностью бактерий образовывать ферменты (ацетилтрансферазу, аденилтрансферазу, фосфотрансферазу), которые вызыва­ют соответственно ацетилирование, аденилирование или фосфорилирование данных антибиотиков. Устойчивость к тетрациклину обусловлена главным образом специфическим подавлением тран­спорта данного антибиотика в бактериальные клетки и т. д.

Таким образом, происходит образование отдельных резистент­ных особей в бактериальной популяции. Их количество крайне незначительно. Так, одна мутировавшая клетка (спонтанная му­тация), устойчивая к какому-либо химиотерапевтическому препа­рату, приходится на 10 5 -10 9 интактных (чувствительных) кле­ток. Передача г-генов с плазмидами и транспозонами повышает число резистентных особей в популяции на несколько порядков. Однако общее число лекарственно-резистентных бактерий в попу­ляции остается весьма низким.

Формирование лекарственно-устойчивых бактериальных попу­ляций происходит путем селекции. При этом в качестве селек­тивного фактора выступает только соответствующий химиотерапевтический препарат, селективное действие которого состоит в подавлении размножения огромного большинства чувствитель­ных к нему бактерий.

Массовой селекции и распространению антибиотикорезистентных бактериальных популяций способствуют многие факторы. Например, бесконтрольное и нерациональное применение анти­биотиков для лечения и особенно для профилактики различных инфекционных заболеваний без достаточных к тому оснований, а также использование пищевых продуктов (мясо домашних птиц и др.), содержащих антибиотики (тетрациклин), и другие фак­торы.

Первый тип - природная устойчивость , которая определяется свойствами данного вида или рода микроорганизмов. (Устойчивость грамотрицательных бактерий к бензилпенициллину, бактерий - к противогрибковым, грибов - к антибактериальным препаратам).

Второй тип - приобретенная устойчивость .

Она может быть первичной и вторичной .

Термин “приобретенная устойчивость ” применяют в случаях, когда в чувствительной к данному препарату популяции микроорганизмов находят резистентные варианты. Она возникает, в основном, в результате мутаций, которые происходят в геноме клетки.

Первичная устойчивость (как результат мутации) оказывается в отдельных клетках популяции через ее гетерогенность до начала лечения антибиотиками.

Вторичная устойчивость формируется также за счет мутаций может расти при контакте бактерий с антибиотиками. Мутации ненаправлены и не связаны с действием антибиотиков. Последние играют лишь роль селекционирующих агентов. Они елиминують чувствительные особи популяции и, соответственно, начинают преобладать резистентные клетки.

В зависимости от скорости возникновения мутантов приобретенная вторичная устойчивость бывает два типов: стрептомициного и пеницилинового.

Стрептомициновий тип возникает как “одноступенчатая мутация“, когда быстро происходит образование мутантов с высокой устойчивостью после одно-двукратного контакта микроба с антибиотиком. Степень ее не зависит от концентрации препарата (стрептомицина, рифампицина, новобиоцина).

Пенициллиновий тип резистентности формируется постепенно, путем “многоступенчатых мутаций”. Селекция стойких вариантов при этом происходит медленно (пеницилин, ванкомицин, левомицетин, полимиксин, циклосерин)

Резистентность микробов к антибиотикам обеспечивается генами, которые локализуются или в хромосоме, или в составе внехромосомних элементов наследственности (транспозоны, плазмиды).

Хромосомные мутации - самая частая причина изменения рецептора, мишени, с которой взаимодействуют лекарства. Так, белок Р10 на 30s субъединице бактериальной рибосомы является рецептором для прикрепления стрептомицина. У бактерий, устойчивых к действию эритромицина, может повреждаться сайт на50s субединице рибосомы в результате метилирования 23s рРНК.

R-плазмиды могут содержать от одного до десяти и больше разных генов лекарственной резистентности, которая делает микроба нечувствительным к подавляющему большинству антиибиотикив, которые используются в клинике. Некоторые из них (конъюгативные, трансмиссивные) способны передаваться от одного бактериального штамма к другому не только в пределах одного вида, но и часто разных видов и даже родов микробов. Кроме конъюгации возможна передача детерминант устойчивости с помощью трансдукции (у стафилококков), а также трансформации.