Отведениями эйнтховена называют. Эйнтховен, Виллем: биография. Поздние годы и признание

Анализ электрокардиограмм

Сердце человека – это мощная мышца. При синхронном возбуждении волокон сердечной мышцы, в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов в несколько мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы. Моделировать электрическую активность сердца можно с использованием дипольного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой ‑ сердце ‑ это токовый диполь с дипольным моментом Р с (электрический вектор сердца), который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла (рис. 34).

По Эйнтховену сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая
рука – левая рука – левая нога (рис. 35 а).

Разности потенциалов, снятые между этими точками – это проекции дипольного момента сердца на стороны этого треугольника:

Эти разности потенциалов, со времени Эйнтховена в физиологии принято называть «отведениями». Три стандартных отведения приведены на рис. 35 б. Направление вектора Р с определяет электрическую ось сердца.


Рис. 35 а.

Рис. 35 б. Нормальная ЭКГ в трех стандартных отведениях



Рис. 35 в. Зубец Р – деполяризация предсердия,

QRS – деполяризация желудочков, Т – реполяризация

Линия электрической оси сердца при пересечении с направлением 1-го отведения образует угол , который определяет направление электрической оси сердца (рис. 35 б). Так как электрический момент сердца-диполя изменяется со временем, то в отведениях будут получены зависимости разности потенциалов от времени, которые называются электрокардиограммами.

Ось О – это ось нулевого потенциала. На ЭКГ отмечают три характерных зубца P , QRS , T (обозначение по Эйнтховену).
Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом (рис. 35 б). Наиболее высокие зубцы во втором отведении, низкие в третьем. Сопоставляя ЭКГ в трех отведениях за один цикл составляют представление о состоянии нервно-мышечного аппарата сердца (рис. 35 в).

Факторы, влияющие на ЭКГ

Положение сердца. Направление электрической оси сердца совпадает с анатомической осью сердца. Если угол находится в пределах от 40°до 70°, это положение электрической оси считается нормальным. ЭКГ имеет обычные соотношения зубцов в I, II, III стандартных отведениях. Если близок или равен 0°, то электрическая ось сердца параллельна линии первого отведения и ЭКГ характеризуется высокими амплитудами в I отведении. Если близок к 90°, амплитуды в I отведении минимальны. Отклонение электрической оси от анатомической в ту или другую сторону клинически означает одностороннее поражение миокарда.

Изменение положения тела вызывает некоторые изменения положения сердца в грудной клетке и сопровождается изменением электропроводности окружающих сердце сред. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение.

В 2002 г. опубликовал редакционную статью «10 величайших открытий в кардиологии XX века». Среди них были и ангиопластика, и открытая операция на сердце. Однако, бесспорно, первым методом в этом списке стоит электрокардиография, а рядом - фамилия голландца Виллема Эйнтховена, создателя первого распространенного метода инструментальной неинвазивной диагностики, с которым сталкивался каждый из нас. Нобелевский комитет по достоинству оценил изобретение и с формулировкой «за открытие техники электрокардиографии» вручил Эйнтховену премию.

Рисунок 1. Огастес Дезире Уоллер и его собака Джимми.

Если быть совсем точными, то, конечно, первую в истории электрокардиограмму (ЭКГ) снял не Эйнтховен. Но рейтинг Texas Heart Institute Journal всё же справедлив - по ней было абсолютно ничего не понятно. И «голландцем» нашего героя назвать можно, но можно и по-другому. Однако все по порядку.

Если рассуждать по принципу «государство N - родина слонов», Резерфорд , к примеру, окажется первым новозеландским нобелевским лауреатом, а Виллем Эйнтховен - первым нобелиатом Индонезии. Потому что родился он на острове Ява, в городе Семаранг, ныне - пятом по величине городе Индонезии. Тогда это была Голландская Ост-Индия , о государстве Индонезия никто не слышал, ведь до признания ее независимости оставалось более 80 лет.

С происхождением у Эйнтховена тоже все замысловато: он потомок изгнанных из Испании евреев. Фамилия появилась при Наполеоне, который в своем Кодексе указал, чтобы все граждане его империи, куда входила Голландия, имели фамилии. Двоюродный дед Эйнтховена выбрал немного искаженное название города, где он жил (надеюсь, не нужно упоминать, какого).

Отцом будущего нобелиата был военный врач, Якоб Эйнтховен, который, к сожалению, не смог обеспечить собственное здоровье. В 1866 г. он умер от инсульта, и через четыре года (Виллему тогда было уже 10) его семья перебралась в Утрехт. Разумеется, большого достатка в семье не было - его мать осталась одна с тремя детьми. Виллем решил пойти по стопам отца - отчасти по призванию (медицина), отчасти - по нужде. Дело в том, что заключив военный контракт, он смог обучаться на медицинском факультете Утрехтского университета бесплатно.

В студенческие годы Виллем был очень спортивным человеком, регулярно заявлял, что и в учебе нужно «не дать погибнуть телу», был прекрасным фехтовальщиком и гребцом (последнее - опять же вынужденно, поскольку сломал запястье и занялся греблей для восстановления функциональности кисти). Да и первая работа Эйнтховена по медицине была посвящена механизму работы локтевого сустава, одинаково важного как гребцу, так и фехтовальщику. В этой работе, пожалуй, уже проявилась двойственность таланта Эйнтховена: прекрасное знание анатомии и физиологии и интерес к физическим принципам работы человеческого организма. В данном случае - механике. А ведь дальше были работы и по оптике, и, разумеется, по электричеству.

Рисунок 2. Капиллярный электрометр Липпманна.

Дальше нашему герою очень повезло. Правда, при этом не повезло профессору физиологии Лейденского университета Адриану Хейнсиусу: он умер. А юному Эйнтховену, четверти века от роду, вместо службы в медицинском корпусе досталось профессорское место в не самом последнем европейском университете. Это случилось в 1886 г., и с тех пор более 41 года Эйнтховен работал в Лейдене - до самой своей смерти в 1927 г.

Активно занимался Эйнтховен и офтальмологией - его докторская диссертация называлась «Стереоскопия посредством дифференцировки цветов». Позже вышли очень интересные работы «Простое физиологическое объяснение различных геометрико-оптических иллюзий», «Аккомодация человеческого глаза» и другие. Впрочем, больше всего времени молодой исследователь занимался физиологией дыхания. В том числе и работой нервных импульсов в механизме контроля дыхания.

Но тут подоспел Первый Международный конгресс по физиологии - важнейшее событие в мировой медицине (Базель, 1889 г.). Там и произошла эпохальная встреча с Огастесом Уоллером (рис. 1), который первым в мире показал, что можно снять запись электрических импульсов сердца, не вскрывая тело живого организма (1887 г.) . То, что само тело человека может производить электричество, было очень новой мыслью в физиологии.

В Базеле Уоллер показывал свою работу при помощи собственного пса Джимми. Именно Уоллера нужно называть (и называют) первооткрывателем ЭКГ.

Правда, надо сказать, что кардиограммы у Уоллера были ужасные. Он регистрировал импульсы при помощи капиллярного электрометра (кстати, разработанного нобелевским лауреатом по физике 1908 года и одним из изобретателей цветной фотографии Габриэлем Липпманном) (рис. 2).

Рисунок 3. Струнный гальванометр Эйнтховена.

Рисунок 5. Треугольник Эйнтховена.

В этом приборе электрические импульсы от сердца попадали на капилляр с ртутью, уровень которой менялся в зависимости от силы тока. Но сама по себе ртуть меняла положение не мгновенно, а обладала некоей инерцией (ртуть ведь очень тяжелая жидкость). В результате получалась каша. Более того, записать импульсы сердца - это интересная задача, но тут любой ученый должен уметь отвечать на самый главный вопрос - «и что?»

Пять лет (с 1890 по 1895 гг.) Эйнтховен занимался усовершенствованием технологии капиллярной электрометрии и попутно создал нормальный математический аппарат обработки «каши». Что-то начало получаться, но все равно прибор был ненадежным, неточным и громоздким. Однако нельзя сказать, что эти годы прошли зря: в 1893 г. на заседании Нидерландской медицинской ассоциации из уст Эйнтховена впервые официально прозвучал термин «электрокардиограмма» .

Однако нормальной кардиограммы получить капиллярным методом не удалось. И в 1901 году Виллем Эйнтховен сделал собственный прибор - струнный гальванометр , а первую статью о том, что на нем записана кардиограмма, он опубликовал в 1903 г. (издание датировано 1902 г. ).

Его главной частью была кварцевая струна - ниточка из кварца толщиной в 7 микрон (рис. 3). Она делалась весьма оригинальным способом: стрела, к которой было прикреплено кварцевое разогретое волокно, выстреливалась из лука (от себя добавим, что таким же способом 20 лет спустя в свежесозданном ленинградском Физтехе молодые исследователи Николай Семенов и Петр Капица получали сверхтонкие капилляры). Эта нить при попадании на нее электрических импульсов отклонялась в постоянном магнитном поле. Чтобы фиксировать отклонение нити, параллельно ей во время измерений двигалась фотобумага, на которую при помощи системы линз проецировалась тень от нити (рис. 4).

Рисунок 6. Зубцы и интервалы кардиограммы.

Интересно, как на первые кардиограммы наносилась временная координатная сетка (сейчас бумага для кардиограмм сразу содержит сетку, но у Эйнтховена-то была фотобумага!). Сетка наносилась при помощи теней от спиц велосипедного колеса, вращавшегося с постоянной скоростью.

Голландец недолго прожил в лауреатах - через два года после своей нобелевской лекции он умер от рака желудка. Печальнее всего, что, несмотря на открытость своей лаборатории (в ней часто бывали гости), ни учеников, ни научной школы после Эйнтховена не осталось. А вот лаборатория Эйнтховена есть: его именем названа лаборатория экспериментальной сосудистой медицины в его родном Лейдене (Лейденский университетский медицинский центр, LUMC).

И еще одно любопытное наблюдение. Статья про Эйнтховена в русскоязычной Википедии гораздо подробнее и длиннее, чем статья в англоязычной , и более того, входит в число «хороших» статей (свидетельствую - хороша!). Удивительный факт, но у открывателя кардиограммы есть свои русскоязычные поклонники. Впрочем, теперь их стало минимум на одного больше.

Литература

  1. Mehta N.J., Khan I.A. (2002). Cardiology’s 10 greatest discoveries of the 20th century. Tex. Heart Inst. J. 29 , 164–71 ;
  2. Waller A. D. (1887). A demonstration on man of electromotive changes accompanying the heart’s beat . J. Physiol . 8 , 229–234 ;
  3. Einthoven W. (1901). Un nouveau galvanomètre. Archives néerlandaises des sciences exactes et naturelles. ». Сайт политехнического музея..

При разработке собственного струнного гальванометра Эйнтховен взял за основу конструкцию магнитоэлектрического гальванометра Депре -Д’Арсонваля. Он заменил подвижные части (катушку и зеркало) на тонкую посеребрённую кварцевую нить (струну). По нити пропускался электрический сигнал сердца, регистрируемый с поверхности кожи. Вследствие этого на нить в поле электромагнита действовала сила Ампера, прямо пропорциональная величине силы тока (), и нить отклонялась нормально к направлению линий магнитного поля. Кварцевые нити изготовлялись следующим образом: на конце стрелы закреплялось кварцевое волокно таким образом, чтобы оно удерживало стрелу при натянутой тетиве лука; волокно нагревалось до той степени, когда оно не было способно сдерживать натяжение тетивы, и стрела выстреливала, вытягивая волокно в тонкую однородную нить диаметром 7?. Далее нить требовалось покрыть слоем серебра, для этого Эйнтховен сконструировал специальную камеру, в которой она бомбардировалась беспримесным серебром. Одной из самых больших проблем было создание источника сильного и постоянного по значению магнитного поля. Эйнтховену удалось создать электромагнит, обеспечивавший поле в 22 000 Гс, однако он настолько разогревался в рабочем состоянии, что для него пришлось подвести систему водяного охлаждения. Другая проблема заключалась в создании системы записи и измерения отклонений нити. Посоветовавшись с Дондерсом и Снелленом, Эйнтховен сконструировал систему линз, позволявшую фотографировать тень нити. В качестве источника света он использовал массивную дуговую лампу. Устройство фотографической камеры включало в себя фотографическую пластинку, которая во время снятия показаний двигалась с постоянной скоростью, регулируемой масляным поршнем. Пластинка передвигалась под линзой, на которой была нанесена шкала в вольтах. Временна?я шкала наносилась на саму пластинку тенями от спиц вращающегося с постоянной угловой скоростью велосипедного колеса.

Благодаря использованию очень лёгкой и тонкой нити и возможности изменять её напряжение для регулирования чувствительности прибора струнный гальванометр позволил получить более точные выходные данные, чем капиллярный электрометр. Первую статью о записывании электрокардиограммы человека на струнном гальванометре Эйнтховен опубликовал в 1903 году. Существует мнение, что Эйнтховену удалось достичь точности, превосходящей многие современные электрокардиографы.

В 1906 году Эйнтховен опубликовал статью «Телекардиограмма» (фр. Le t?l?cardiogramme), в которой описал метод записи электрокардиограммы на расстоянии и впервые показал, что электрокардиограммы различных форм сердечных заболеваний имеют характерные различия. Он привёл примеры кардиограмм, снятых у пациентов с гипертрофией правого желудочка при митральной недостаточности, гипертрофией левого желудочка при аортальной недостаточности, гипертрофией левого ушка предсердия при митральном стенозе, ослабленной сердечной мышцей, с различными степенями блокады сердца при экстрасистоле.

Треугольник Эйнтховена

В 1913 году Виллем Эйнтховен в сотрудничестве с коллегами опубликовал статью, в которой предложил к использованию три стандартных отведения: от левой руки к правой, от правой руки к ноге и от ноги к левой руке с разностями потенциалов: V1,V2 и V3 соответственно. Такая комбинация отведений составляет электродинамически равносторонний треугольник с центром в источнике тока в сердце. Эта работа положила начало векторкардиографии, получившей развитие в 1920-х годах ещё при жизни Эйнтховена.

Закон Эйнтховена

Закон Эйтховена является следствием закона Кирхгофа и утверждает, что разности потенциалов трёх стандартных отведений подчиняются соотношению V1 + V3 = V2. Закон имеет применение, когда вследствие дефектов записи не удаётся идентифицировать зубцы P, Q, R, S, T и U для одного из отведений; в таких случаях можно вычислить значение разности потенциалов, при условии, если для других отведений получены нормальные данные.

Поздние годы и признание

В 1924 году Эйнтховен прибыл в США , где помимо посещения различных медицинских заведений прочитал лекцию из цикла Лекций Харви (англ. Harvey Lecture Series), положил начало циклу Лекций Данхема (англ. Dunham Lecture Series) и узнал о присуждении ему Нобелевской премии. Примечательно, что когда Эйнтховен в первый раз прочитал эту новость в Boston Globe, он подумал, что это либо шутка, либо опечатка. Однако его сомнения развеялись, когда он ознакомился с сообщением от Reuters. В том же году он получил премию с формулировкой «За открытие техники электрокардиограммы». За свою карьеру Эйнтховен написал 127 научных статей. Последняя его работа была опубликована посмертно, в 1928 году, и посвящалась токам действия сердца. Исследования Виллема Эйнтховена порой причисляются к десяти величайшим открытиям в области кардиологии в XX веке. В 1979 году был основан Фонд Эйнтховена, целью которого является организация конгрессов и семинаров по кардиологии и кардиохирургии.

Теоретические основы

Стандартные отведения


Отведение I.

Отведение II.

Отведение III.

Электрокардиограф

Электрокардиограф – прибор регистрирующий разности потенциалов, вызванных электрической активностью сердца, между точками на поверхности тела.

Типовые блоки электрокардиографа:

1. Входное устройство - система электродов, кабелей их подключения к прибору, приспособлений для фиксации электродов.

2. Усилитель биопотенциалов. Коэффициент усиления – порядка 1000.

3. Регистрирующее устройство - обычно термопринтер с разрешением не менее 8 точек/мм. Применяются значения скорости протяжки ленты 25 мм/с и 50 мм/с

4. ЖКИ – экран с видеоконтроллером.

5. Центральный процессор.

6. Клавиатура.

7. Блок питания

8. Блок калибровки. При его кратковременных включениях, на вход усилителя вместо пациента подключается калибровочный прямоугольный импульс амплитудой (1±0.01) мВ. Если коэффициент усиления по п.2 в допуске, то на ленте прописывается прямоугольный импульс высотой 10 мм

Требования ГОСТ 19687-89

ГОСТ 19687-89 «ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ БИОЭЛЕКТРИЧЕСКИХ ПОТЕНЦИАЛОВ СЕРДЦА» (см. Приложение 1) определяет основные характеристики электрокардиографов и электрокардиоскопов и методы их измерения. Основные параметры приборов должны соответствовать приведенным в таблице 1.

Таблица 1

Наименование параметра Значение параметра
1. Диапазон входных напряжении U, мВ. впределах 2. Относительная погрешность измерения напряжения* и, в диапазонах: от 0,1 до 0,5 мВ, %, не более от 0,5 до 4 мВ, %, не более 3. Нелинейность, %, в пределах: для электрокардиографов для электрокардиоскопов 4. Чувствительность S, мм/мВ 5. Относительная погрешность установки чувствительности, %. в пределах 6. Эффективная ширина записи (изображения) канала В, мм, не менее 7. Входной импеданс Zвх, МОм, не менее 8. Коэффициент ослабления синфазных сигналов Кс, не менее: для электрокардиографов для электрокардиоскопов 9. Напряжение внутренних шумов, приведенных ко входу Uш, мкВ, не более 10. Постоянная времени, с. не менее 11. Неравномерность амплитудно-частотной характеристики (АЧХ) в диапазонах частот: от 0,5 до 60 Гц, % от 60 до 75 Гц, % 12. Относительная погрешность измерения интервалов времени в диапазоне интервалов времени от 0.1 до 1.0 с,% не более 13. Скорость движения носителя записи (скорость развертки) Vн мм/с 14. Относительная погрешность установки скорости движения носителя записи (скорости развертки) ,%, в пределах: для электрокардиографов для электрокардиоскопов От 0,03 до 5 ±15 ±7 ±2 ±2.5 2.5**; 5; 10; 20; 40** ±5 40*** 100000 28000 20 3.2 от -10 до +5 от -30 до +5 ±7 25,50 допустимы и иные значения ±5 ±10

* Допускается не проверять при проведении приемо-сдаточных испытаний.

** Допускается по согласованию с заказчиком.

***Для носимых приборов по согласованию с заказчиком допускаются значения менее 40 мм.

В международном стандарте IEC 60601-2-51 “Medical electrical equipment-Part 2-51: Particular requirements for safety, including essential performance, of recording and analysing single channel and multichannel electrocardiographs”, принятом целиком в РФ требования установлены в SECTION EIGHT - ACCURACY OF OPERATING DATA AND PROTECTION AGAINST HAZARDOUS OUTPUT (см. Приложение 2).

Типовая схема электрокардиографа с активной компенсацией синфазной помехи.

Рис. 5. Типовая структура ЭКГ- канала с активной компенсацией синфазной помехи.

Рис. 6. Главная часть схемы канала ЭКГ

Кардиограф DIXION ECG-1001a

Кабель отведений пациента

Согласующее устройство

Задняя и передняя панель соответственно.

Схема установки.

Схема согласующего устройства для проверки диапазона регистрируемых сигналов, погрешности чувствительности, погрешности измерения напряжения, погрешности измерения интервалов времени, погрешности скорости движения, погрешности калибровочного сигнала, постоянной времени, АЧХ

Условные обозначения элементов схемы и их номинальные значения:

G1 – генератор сигналов специальной формы;

G2 – генератор импульсов прямоугольной формы;

R1 – 51 кОм ±5%;

R2– 100 кОм ±0,1%;

R3– 100 Ом ±0,1%;

R4– 51 Ом ±5%;

R5 – выбирают для получения напряжения на R4±(300 мВ±10%) в зависимости от напряжения источника;

R8 - 100 Ом ±5%;

C1 – 47 нФ ±10%;

Z1 - параллельно соединенные R1 и C1;

Z2 - параллельно соединенные R6 и C2;

U – источник постоянного напряжения, обеспечивающий напряжение на R4±(300±10%).

Порядок выполнения работы

Под контролем лаборанта собрать схему установки.

Перед проверкой основных параметров прибор подвергают испытанию на допустимые перегрузки по входному напряжению в каждом регистрирующем канале гармоническим сигналом размахом 1В ÷5% и частотой 50 Гц±5%, приложенным между отводящими электродами в течении времени не менее 10 с. Фильтры должны быть выключены. Испытания не должны приводить к повреждению пишущего механизма или электрической схемы прибора.

Установить скорость протяжки ленты 25 мм/с (в меню кардиографа). Это означает, что при расшифровке записей одному миллиметру вдоль ленты соответствует время t = 1/25 = 0,04 с/мм.

1. Выполнить проверку относительной погрешности установки чувствительности подавая на вход прибора прямоугольный сигнал 5 Hz ±5% и амплитудой 1 V ±2% и изменяя усиление (20, 10, 5).

Для этого:

· Из библиотеки сигналов (кнопка More Function) выбрать прямоугольный сигнал, CardTest01_05_1(0,33Hz), изображенный на рис.12.3 и задаём частоту 0,33 Hz.

· На панели генератора установить амплитуду сигнала 2 V.

· На кардиографе выбрать чувствительность равной 5mm/mV кнопкой SENS. Возможны следующие уровни чувствительности: ×1 (10mm/mV) → ×2 (20mm/mV) →AGC → · 25 (2.5mm/mV)→ · 5 (5mm/mV)).

· Запустить сигнал кнопкой RUN.

· Повторить всё, установив амплитуду 1V, и чувствительность 10mm/mV. А затем задать амплитуду 0,5V и чувствительность 20mm/mV.

· С помощью линейки и циркуля измеряем отклонение амплитуды, допустимы отклонение ±5%.

· Заносим результаты в таблицу.

2. Проверку неравномерности АЧХ проводить подачей на вход прибора гармонического сигнала в соответствие со схемой 7.1.

Неравномерность АЧХ в процентах вычисляют по формуле: δ 1 = *100,

где h о - размер размаха изображения синусоиды на записи на опорной частоте 10 Гц, мм.

h max - размер размаха изображения синусоиды на записи максимально отличающегося от h о в положительную или отрицательную стороны, мм.

Для проверки АЧХ погрешности измерения напряжения рекомендуется использовать комплексные испытательные сигналы генератора PCSGU-250, представленные на Рис.12. (1 и 2 сигнал)

Для этого:

· Из библиотеки сигналов выбрать сигнал, CardTest10_20_30_40_50_60_75_100(0,5Hz).

· Установить частоту 0,5 Hz и амплитуду 2V.

· На кардиографе устанавливаем чувствительность 10mm/mV.

· Записываем сигнал.

· С помощью линейки и циркуля измеряем h о (для 10 Hz пачки сигналов)и h max 1 (для 60 Hz пачки сигналов) и h max 2 (для 75 Hz пачки сигналов.

· Проводим расчет по формуле для 60 и 75 Hz сигналов.

· Повторяем все действия для сигнала CardTest05_2_10_25(0,25Hz), установив амплитуду 2V, частоту 0,25 Hz.

· Измеряем h о для пачки сигналов 0,5 Hz и h max для пачки сигналов 10 и 25Hz, h max 1 (для 10 Hz) и h max 2 (для 25 Hz)

· Результаты вносим в таблицу.

Отклонения АЧХ допустимы следующие: в первом сигнале для пачки 60Гц "-10%", для пачки 75Гц - "30%". Во втором сигнале ±5%.


Рис.12. Комплексные испытательные сигналы, используемые при поверке электрокардиографов.

3. Проверку постоянной времени провести в каждом канале при чувствительности 5мм/мВ подачей на вход прибора сигнала прямоугольной формы размахом 4мВ±3% длительностью менее 5 с. Постоянную времени определить по записи как время затухания сигнала до уровня 0,37согласно чертежу без учета выбросов.

Изображение переходной характеристики на записи для каждого канала должно быть монотонным, обращенным в сторону нулевой линии.

· Выбираем прямоугольный сигнал с размахом 4мВ.

· Устанавливаем чувствительность на кардиографе 5мм/мВ.

· Записываем сигнал.

· С помощью линейки измеряем максимальную амплитуду (А), затем проводим горизонтальную линию на уровне 0,37А до пересечения с линией сигнала, и измеряем τ как показано на рисунке ниже.

Таблица результатов при измерении погрешности чувствительности

Таблица результатов при проверне неравномерности АЧХ

Таблица результатов при проверне постоянной времени

τ

Выводы:

Теоретические основы

Интегральный электрический вектор сердца (ИЭВС) – это векторная сумма дипольных моментов токовых диполей по всему объему сердца. В ходе сердечного сокращения ИЭВС меняется как по величине, так и по направлению, что вызывает распространение электромагнитной энергии в пространстве.

Стандартные отведения

Эта энергия, распространяясь от сердца по многим направлениям, вызывает появление поверхностных потенциалов на коже разных в различных точках. Эта разница в потенциалах, называемая отведением, может быть зарегистрирована.

Отведение обеспечивает оценку электрической активности сердца между двумя точками (полюсами). Каждое отведение состоит из положительного (+) полюса, или активного электрода, и отрицательного (-) полюса. Между положительным и отрицательным полюсами проходит воображаемая линия, представляющая ось отведения. Поскольку отведения позволяют измерять электрический потенциал сердца с разных позиций, сигналы, регистрируемые этими отведениями, дают свою характерную для каждого отведения кривую.

Направление движения электрического сигнала определяет форму зубцов ЭКГ. Когда оно совпадает с направлением оси отведения и направлено к положительному полюсу, линия на ЭКГ отклоняется вверх («положительное отклонение»). Когда электрический ток направлен от положительного полюса к отрицательному, отклоняется вниз от изолинии («отрицательное отклонение»). Когда направление тока перпендикулярно к оси, зубцы ЭКГ направлены в любом направлении или могут быть низкими. Если электрическая активность отсутствует или слишком мала для измерения, на ЭКГ отображается прямая линия, что обозначается как изоэлектрическое отклонение.

В плоскости, проходящей через сердце вертикально от верхушки к основанию, электрические токи рассматриваются в направлении на сердце спереди. Фронтальную плоскость обеспечивают шесть отведений от конечностей (I, ІІ, ІІІ, aVR, aVL, aVF) (рис. 1).


В плоскости, проходящей горизонтально через середину сердца, направление электрических токов рассматривается сверху вниз. Такой подход обеспечивают шесть грудных отведений (V 1 -V 6) (рис. 2).

Рис. 2. Горизонтальная плоскость

отведения I, II и III (по Эйнтховену). Эти три отведения называются стандартными, или двухполюсными, отведениями от конечностей.

Для записи стандартных отведений от конечностей электроды размещают на правом предплечье, левом предплечье и левой голени. Четвертый электрод помещают на правую голень, он используется как заземление для стабилизации записи ЭКГ и не влияет на характеристику электрических сигналов, регистрируемых на ЭКГ

Эти отведения называют двухполюсными, потому что каждое имеет два электрода, которые обеспечивают одновременную запись электрических токов сердца, идущих по направлению к двум конечностям. Двухполюсные отведения позволяют измерять потенциал между положительным (+) и отрицательным (-) электродами.

Отведение I. Регистрирует электрические токи между правым (красный электрод) и левым предплечьями (желтый электрод).

Отведение II. Регистрирует электрические токи между правым предплечьем (красный электрод) и левой голенью (зеленый электрод).

Отведение III. Регистрирует электрические токи между левой голенью (зеленый электрод) и левым предплечьем (желтый электрод).

Электрод на правом предплечье всегда рассматривается в качестве отрицательного полюса, на левой голени всегда в качестве положительного. Электрод на левом предплечье может быть либо положительным, либо отрицательным в зависимости от отведения: в отведении I он положительный, а в отведении III - отрицательный.

Когда ток направлен к положительному полюсу, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный). Когда ток идет к отрицательному полюсу, зубец ЭКГ инвертирован (отрицательный). В отведении II ток распространяется от отрицательного к положительному полюсу, поэтому зубцы на обычной ЭКГ направлены вверх.

Понятие о треугольнике Эйнтховена.

Размещение электродов для регистрации отведений I, II и Ш, как показано на рис. 3, образует так называемый треугольник Эйнтховена. Каждая сторона этого равностороннего треугольника между двумя электродами соответствует одному из стандартных отведений Эйнтховен считал, что сердце расположено в центре генерируемого им электрического поля. Поэтому сердце рассматривается как центр этого равностороннего треугольника. Из треугольника Эйнтховена получается фигура с трехосевой системой координат для стандартных отведений I, II и III.

Рис. 3. Треугольник Эйнтховена

Закон Эйнтховена гласит: сумма электрических потенциалов, рёгистрируемых в любой момент в отведениях I и Ш, равна электрическому потенциалу, регистрируемому в отведении П. Этот закон может быть использован для обнаружения ошибок, допущенных при наложении электродов, выяснения причин регистрации необычных сигналов в одном из трех стандартных отведений и для оценки серийных ЭКГ.

Отведения aVR, aVL и aVF (по Голбдбергу). Эти три отведения имеют общее название усиленных однополюсных отведений от конечностей.

В этих отведениях используются те же положения электродов, что и в стандартных отведениях I, II и III, то есть электроды фиксируются на правом предплечье, левом предплечье и левой голени. Электрод, наложенный на правую голень, при записи сигналов в этих отведениях не используется.

В отведениях aVR, aVL и aVF исследуется разность электрических потенциалов между конечностями и центром сердца. Их называют однополюсными, потому что лишь один электрод используют для регистрации электрического сигнала; центр сердца всегда нейтрален, поэтому второго электрода не требуется. Обозначение усиленных отведений от конечностей происходит от первых букв английских слов «а» - augmented (усиленный), «V»-voltage (потенциал), «R»-right (правый), «L»-left (левый), «F»-foot (нога).

В связи с изложенным, все электроды в этих отведениях являются положительными. Отрицательный электрод получают путем сложения сигналов отведений I, ІІ и III, алгебраическая сумма которых равна нулю.

Эти отведения также называют усиленными, так как амплитуда комплексов увеличена на 50% по сравнению со стандартными отведениями. Запись усиленных отведений более удобна для интерпретации.

Соотношения, положенные в основу работы электрокардиографа :

UI= Uвх(L)-Uвх(R);

UII= Uвх(F)-Uвх(R);

UIII= Uвх(F)-Uвх(L);

UaVR=Uвх(R)-(Uвх(L)-Uвх(F))/2;

UaVL=Uвх(L)-(Uвх(F)-Uвх(R))/2;

UaVF=Uвх(F)-(Uвх(L)-Uвх(R))/2;

UVi= Uвх(Ci)-(Uвх(R)+Uвх(L)+Uвх(F))/3, где i=1,2,…,6.

Отведения V1- V6 (по Вильсону). Эти шесть отведений называют однополюсными сердечными, или грудными, отведениями. Их обозначают буквой V, а точки съёма положительных потенциалов j (и соответствующие провода кабеля отведений) - буквой С с номером, соответствующим положению электрода (рис. 4). Отрицательный потенциал берётся с точки, потенциал которой формируется в соответствии с соотношением (j R +j L +j F)/3.

Электроды располагают в следующих точках:

С(V)1 - в четвертом межреберье по правому краю грудины (красный электрод);

С(V)2 - в четвертом межреберье по левому краю грудины (желтый электрод);

C(V)3 - посредине линии, соединяющей точки V2 и V4 (зеленый электрод);

C(V)4 - в пятом межреберье по левой срединно-ключичной линии (коричневый электрод);

C(V)5 - в пятом межреберье по левой передней подмышечной линии (черный электрод);


C(V)6 - в пятом межреберье по левой средней подмышечной линии (фиолетовый электрод).

Рис. 4. Отведения по Вильсону

В грудных отведениях измеряется разность электрических потенциалов между электродами, размещенными на груди, и центральным терминалом. Грудные электроды в любом из отведений V всегда положительны. Отрицательный электрод получают за счет сложения сигналов отведений I, II и III, алгебраическая сумма которых равна нулю.


При любых отведениях биопотенциалов сердца от поверхности тела человека, амплитуды зубцов ЭКГ представляют собой проекции ИЭВС на ту или иную ось координатной системы в соответствующий момент сердечной деятельности.

Зубец Р отображает распределение возбуждения по предсердиям; комплекс QRS – при возбуждении желудочков; зубец Т – при их реполяризации. Отклонение от нормы, которое врач обнаруживает в том или ином элементе ЭКГ, дают ему информацию о соответствующих процессах в той или иной части сердца.

Важнейшим параметром ЭКГ служат временные интервалы, по ним оценивают скорость распределения возбуждения в каждом из отделов проводящей системы сердца. Изменения скорости проведения связывают с повреждениями миокардных волокон. Так, даже малый очаг поражения ТМВ диаметром 5-10 мкм, вызывает задержку в распределении возбуждения на 0,1 мс.

В стандартных отведениях зубец Р обычно имеет амплитуду не более 0,25 мВ, а его длительность равна 0,07-0,10 с. Интервал PQ отображает атрио-вентикулярную задержку, и он составляет примерно 0,12-0,21 с при частоте сердечных сокращений от 130 до 70 в минуту. Комплекс QRS наблюдается в течение всего времени, пока возбуждение распределяется по желудочкам. Его длительность изменяется в пределах от 0,06 до 0,09 с. Зубец Q в трети наблюдений отсутствует в нормальной ЭКГ, а когда он обнаруживается, то его амплитуда не превышает 0,25 мВ. Зубец R обладает максимальной амплитудой среди всех других элементов ЭКГ, и его амплитуда меняется в пределах 0,6-1,6 мВ. Зубец S также зачастую отсутствует, но когда его обнаруживают, может иметь амплитуду до 0,6 мВ. Его появление на ЭКГ характеризует тот процесс, когда возбуждение по миокарду желудочков завершается вблизи основания (у предсердий). Интервал TS при пульсе 65-70 сокращений в минуту, составляет примерно 0,12 с. Длительность зубца Т обычно меняется в пределах от 0,12 до 0,16 с, а его амплитуда изменяется в пределах 0,25-0,6 мВ.

Необходимо отметить, что зубец Р возникает на ЭКГ примерно за 0,02 с до начала сокращения предсердий, а комплекс QRS - за 0,04 с до начала сокращения желудочков. Следовательно, электрические проявления возбуждения предшествуют механическим (сократительные деятельности миокарда). В этой связи нельзя говорить, будто ЭКГ является результатом сердечной деятельности (сердечные сокращения). Имея ряд отведений ЭКГ (не менее двух), снятых в разных отведениях, можно синтезировать ИЭВС. В медицинской литературе его называют электрической осью сердца. По определению, электрическая ось сердца – это отрезок прямой (вектор), соединяющий два сечения миокарда, обладающих в данный момент наибольшей разностью потенциалов. Этот вектор направлен от отрицательного полюса (возбужденного участка) к положительному (покоящемуся участку). Направление электрической оси сердца в ходе распределения возбуждения по миокарду, постоянно меняется, в этой связи принято определять среднюю ось сердца. Так называют вектор, который можно построить в промежутках между началом и окончанием деполяризации миокарда желудочков. По расположению средней оси оценивают геометрическую ось сердца, которые, как правило, параллельны друг другу. Таким образом, построенная средняя электрическая ось сердца дает представление о положении сердца в грудной полости, и ее изменение служит признаком в изменениях соответствующего желудочка.