Отраженная солнечная радиация определение. Понятие о солнечной радиации

Общая гигиена. Солнечная радиация и ее гигиеническое значение.

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие -- гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная -- это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см 2

в мин. Проходя через атмосферу солнечные лучи значительно ослабевают -- рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 -- 1,53 калории\см2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спекра -- специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим:
1) теплые тона -- желтый, оранжевый, красный. 2) холодные тона -- голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску: зеленый -- вода, красный -- пар, желтый -- газ, оранжевый -- кислоты, фиолетовый -- щелочи, коричневый -- горючие ждкости и масла, синий -- воздух, серый -- прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:

1. световой коэффициет -- характеризует собой отношение площади застекленной поверхности окон к площади пола.

2. Угол падения -- характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270.

3. Угол отверстия-- характеризует освещенность небесным светом (должен быть не менее 50). На первых этажах ленинградских домов - колодцев этот угол фактически отсутсвует.

4. Глубина заложения помещения -- это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены).

Светотехнические показатели -- это показатели определяемые с помощью прибора -- люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость -- это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки исскуственного освещения помещений иеет значение яркость, отсутсвие пульсаций, цветность и др.

Инфракрасные лучи. Основное биологическое действие этих лучей -- тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинновлонвый участок оказывает свое тепловое действие на поверхности. Это используется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор -- актинометр. Измеряется инфракрасная радиация в калориях на см2\мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям -- катаракте (помутнение хрусталика). Причиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог -- эритема. Она возникает за счет теплового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тпловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с поражением ЦНС. Солнечный удар поражает тех кто проводит много часов подряд под палящими лучами солнца с непокрытой головой. Происходит разогревание мозговых оболчек.

Тепловой удар возникает из-за перегревания организма. Он может случатся с тем кто выполняет тяжелую физическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у наших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют пираметры различных видов. В основе ох действия -- поглащение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокатном цехе нарма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения превышающие 3,7 считаются значительными и требуют проведения профилактических мероприятий -- применение защитных экранов, водянные завесы, спецодежда.

Ультрафиолетовые лучи (уф).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загарвозникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержаны рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. Световое голодание -- это длительное отсутсвие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

Все виды солнечных лучей достигают земной поверхности тремя путями - в виде прямой, отраженной и рассеянной солнечной радиации.
Прямая солнечная радиация - это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум - утром и вечером; от времени года: максимум - летом, минимум - зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей).
Отраженная солнечная радиация - это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые - в меньшей степени.

Рассеянная солнечная радиация образуется в результате рассеивания солнечных лучей в атмосфере. Молекулы воздуха и взвешенные в нем частицы (мельчайшие капельки воды, кристаллики льда и т. п.), называемые аэрозолями, отражают часть лучей. В результате многократных отражений часть их все же достигает земной поверхности; это рассеянные солнечные лучи. Рассеиваются в основном ультрафиолетовые, фиолетовые и голубые лучи, что и определяет голубой цвет неба в ясную погоду. Удельный вес рассеянных лучей велик в высоких широтах (в северных районах). Там солнце стоит низко над горизонтом, и потому путь лучей к земной поверхности длиннее. На длинном пути лучи встречают больше препятствий и в большей степени рассеиваются.

(http://new-med-blog.livejournal.com/204

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Радиационный баланс
Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности
- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;
- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.
Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:
- радиационный баланс;
- затрата тепла на испарение;
- турбулентный теплообмен между поверхностью океана и атмосферой;
- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и
- горизонтальная океаническая адвекция.

(http://www.glossary.ru/cgi-bin/gl_sch2.c gi?RQgkog.outt:p!hgrgtx!nlstup!vuilw)tux yo)

Измерение солнечной радиации.

Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром.

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

(http://www.constructioncheck.ru/default.a spx?textpage=5)

Солнечная радиация — поступающая на Землю энергия солнечного излучения в виде потока электромагнитных волн.

Солнце распространяет вокруг себя мощное электромагнитное излучение. Всего одна двухмиллиардная его доля попадает в верхние слои атмосферы Земли, но и она составляет огромное число калорий в минуту.

Далеко не весь энергетический поток достигает поверхности Земли - большая его часть отбрасывается планетой в мировое пространство. Земля отражает атаку тех лучей, которые губительны для живого вещества планеты. На дальнейшем пути к Земле солнечные лучи встречают препятствия в виде наполняющих атмосферуводяного пара, молекул углекислого газа и частичек пыли, взвешенных в воздухе. Атмосферный «фильтр» поглощает значительную часть лучей, рассеивает их, отражает. Особенно велика отражательная способность облаков. В результате непосредственно земная поверхность получает лишь 2/3 той радиации, которая пропускается озоновым экраном. Но и из этой части многое отражается в соответствии с отражательной способностью различных поверхностей.

На всю поверхность Земли поступает чуть более 100000 калорий на 1 см2 в минуту. Эта радиация поглощается растительностью, почвой, поверхностью морей и океанов. Она превращается в тепло, которое расходуется на прогревание слоев атмосферы, движение воздушных и водных масс, на создание всего великого разнообразия форм жизни на Земле.

Солнечная радиация поступает на земную поверхность различными путями:

  1. прямая радиация: поступление радиации непосредственно от Солнца, если оно не закрыто облаками;
  2. рассеянная радиация: поступление радиации от небесного свода или облаков, рассеивающих солнечные лучи;
  3. тепловая: поступление радиации происходит от атмосферы, нагревшейся в результате воздействия радиации.

Прямая и рассеянная радиация поступает только днем. Вместе они составляют суммарную радиацию. Та солнечная радиация, которая остается после потери на отражение от поверхности, называется поглощенной.

Солнечную радиацию измеряют с помощью прибора, который называется актинометром.

Солнце заливает Землю целым океаном энергии, который практически неисчерпаем, поэтому в последние годы все большее внимание уделяется проблеме использования солнечной энергии в хозяйстве. В разных странах уже работают солнечные опреснители, водонагреватели, сушители. Полностью на энергии солнечной радиации работают запускаемые с Земли искусственные спутники, космические корабли, лаборатории.

Солнечная радиация википедия
Поиск по сайту:

На изменения притока тепла в короткие периоды времени и на неравномерное распределение его в ландшафтной оболочке влияет ряд обстоятельств, из которых мы рассмотрим наиболее важные.

Небольшие периодические изменения радиации зависят прежде всего от того, что Земля обращается вокруг Солнца по эллиптической орбите и, следовательно, расстояние её от Солнца меняется. В перигелии, т. е. в наиболее близкой к Солнцу точке орбиты (Земля бывает в ней в настоящую эпоху 1 января), расстояние равно 147 млн. км; в афелии, т. е. наиболее удалённой от Солнца точке орбиты (3 июля), это расстояние уже 152 млн. км; разница составляет 5 млн. км. В соответствии с этим в начале января радиация увеличивается на 3,4% по сравнению со средней (т. е. вычисленной для среднего расстояния от Земли до Солнца), а в начале июля на 3,5% уменьшается.

Весьма важным фактором, определяющим количество радиации, получаемое тем или иным участком земной поверхности, является угол падения солнечных лучей. Если J - интенсивность радиации при вертикальном падении лучей, то при встрече их с поверхностью под углом α интенсивность радиации будет J sin α: чем острее угол, тем на большую площадь должна распределиться энергия пучка лучей и, стало быть, тем меньше её придётся на единицу площади.

Угол, образуемый солнечными лучами с земной поверхностью, зависит от рельефа местности, географической широты и высоты Солнца над горизонтом, изменяющейся как в течение суток, так и в течение года.

На неровной местности (всё равно, идёт ли речь о горах или мелких неровностях) различные элементы рельефа освещаются Солнцем неодинаково. На солнечном склоне холма угол падения лучей больше, чем на равнине у подножия холма, но на противоположном склоне этот угол очень мал. Под Ленинградом склон холма, обращённый к югу и наклоненный под углом в 10°, находится в тех же тепловых условиях, что и горизонтальная площадка под Харьковом.

Зимой обращённые к югу крутые склоны обогреваются лучше, чем пологие (так как Солнце стоит в общем низко над горизонтом). Летом пологие склоны южной экспозиции получают тепла больше, а крутые меньше, чем горизонтальная поверхность. Склоны северной экспозиции в нашем полушарии во все сезоны получают наименьшее количество радиации.

Зависимость угла падения солнечных лучей от географической широты довольно сложная, так как при существующем угле наклона эклиптики высота Солнца в данном месте (значит, и угол падения солнечных лучей на плоскость горизонта) меняется не только за сутки, но и в году.

Наибольшая полуденная высота, какой на широте φ. Солнце достигает в дни равноденствий, составляет 90° - φ, в день летнего солнцестояния 90°- φ +23°,5 и в день зимнего солнцестояния 90° - φ - 23°,5.

Следовательно, наибольший угол падения солнечных лучей в полдень на экваторе в году изменяется от 90° до 66°,5, а на полюсе от -23°,5 до + 23°,5, т. е. практически от 0° до + 23°,5 (так как отрицательный угол характеризует величину погружения Солнца под горизонт).

Большую роль в преобразовании солнечной радиации играет газовая оболочка Земли. Частички воздуха, водяного пара и пылинки рассеивают солнечный свет; благодаря этому днём светло и при отсутствии прямых солнечных лучей. Атмосфера, кроме того, поглощает некоторое количество лучистой энергии, т. е. переводит её в тепловую. Наконец, солнечная радиация, поступающая в атмосферу, частично отражается обратно в мировое пространство. Особенно сильными отражателями служат облака.

В результате не вся радиация, поступившая на границу атмосферы, достигает поверхности Земли, а лишь часть её и притом качественно (по спектральному составу) изменённая, так как волны короче 0,3 μ, энергично поглощаемые кислородом и озоном, до земной поверхности не доходят, а видимые волны неодинаково рассеиваются.

Очевидно, что при отсутствии атмосферы тепловой режим Земли отличался бы от того, какой на самом деле наблюдается. Для целого ряда расчётов и сопоставлений нередко бывает удобно устранить влияние атмосферы на радиацию, иметь понятие о радиации в чистом виде. С этой целью вычисляют так называемую солнечную постоянную, т. е. количество тепла, приходящееся в 1 мин. на 1 кв. см перпендикулярной к солнечным лучам чёрной (поглощающей всю радиацию) поверхности, которое Земля получала бы при своём среднем расстоянии от Солнца и при отсутствии атмосферы. Солнечная постоянная равна 1,9 кал.

При наличии атмосферы особое значение приобретает такой фактор, влияющий на радиацию, как длина пути солнечного луча в атмосфере. Чем большую толщу воздуха должен пронизывать солнечный луч, тем больше потеряет он энергии в процессах рассеяния, отражения и поглощения. Длина пути луча непосредственно зависит от высоты Солнца над горизонтом и, следовательно, от времени суток и времени года. Если длину пути солнечного луча сквозь атмосферу при высоте Солнца 90° принять за единицу, тогда длина пути при высоте Солнца 40° удвоится, при высоте 10° станет равной 5,7 и т. д.

Для теплового режима земной поверхности очень важна ещё продолжительность освещения её Солнцем. Так как Солнце светит только днём, то определяющим фактором здесь будет длина дня, меняющаяся по временам года.

Наконец, необходимо помнить, что, хотя интенсивность радиации измеряется по отношению к поверхности, поглощающей всю радиацию, на самом деле солнечная энергия, падающая на различные по своей природе тела, поглощается далеко не одинаково. Отношение отражённой радиации к падающей называется альбедо. Давно известно, что альбедо чёрной почвы, светлых скал, травянистого пространства, зеркала водоёма и т. п. сильно разнятся. Светлые пески отражают 30-35%, чёрная почва (гумус) 26%, зелёная трава 26% радиации. Для свежевыпавшего чистого и сухого снега альбедо может достигать 97%. Влажная почва поглощает радиацию иначе, чем сухая: синяя сухая глина отражает 23% радиации, та же глина мокрая 16%. Следовательно, даже при одном и том же притоке радиации, в одних и тех же условиях рельефа, различные точки земной поверхности будут получать различное количество тепла.

Из периодических факторов, обусловливающих известный ритм в колебаниях радиации, особое значение имеет смена времён года.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Одноклассники

Под солнечной радиацией понимают излучение Солнца, которое измеряется по ее тепловому действию и интенсивности.

Та солнечная радиация, которая непосредственно доходит до поверхности Земли, называется прямой солнечной радиацией . Часть солнечной радиации рассеивается в атмосфере, после чего уже доходит до поверхности планеты, такую радиацию называют рассеянной солнечной радиацией . Прямая и рассеянная радиации вместе составляют суммарную солнечную радиацию .

Суммарную солнечную радиацию определяют по тепловому действию на единицу поверхности за единицу времени. Выражают в калориях или джоулях.

Количество суммарной солнечной радиации, попадающей на поверхность зависит от высоты Солнца, продолжительности дня, свойств атмосферы (ее прозрачности, облачности).

Так как Земля имеет шарообразную форму, то наиболее высоко над горизонтом Солнце поднимается на экваторе. Здесь солнечные лучи падают перпендикулярно поверхности. При движении к полюсам солнечные лучи падают уже под все большим наклоном и поэтому приносят все меньше тепла. Кроме того, чем ближе к экватору, тем длиннее день, и, следовательно, поверхность получает больше тепла.

Однако на суммарную солнечную радиацию влияет не только географическая широта.

Солнечная радиация и её влияние на организм человека и климат

На экваторе высокая облачность и влажность, это препятствует прохождению солнечных лучей. Поэтому здесь суммарная солнечная радиация меньше, чем в континентальном тропическом климате (например, территория Сахары).

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.


Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн.

Что такое солнечная радиация? Виды излучения и его влияние на организм

По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

Суммарная солнечная радиация и радиационный баланс

Суммарная радиация – это сумма прямой (на горизонтальную поверхность) и рассеянной радиации. Состав суммарной радиации, т. е. соотношение между прямой и рассеянной радиацией, меняется в зависимости от высоты солнца, прозрачности, атмосферы и облачности.

До восхода солнца суммарная радиация состоит полностью, а при малых высотах солнца – преимущественно из рассеянной радиации. С увеличением высоты солнца доля рассеянной радиации в составе суммарной при безоблачном небе уменьшается: при h = 8° она составляет 50%, а при h = 50° – только 10-20%.

Чем прозрачнее атмосфера, тем меньше доля рассеянной радиации в составе суммарной.

3. В зависимости от формы, высоты и количества облаков доля рассеянной радиации увеличивается в разной степени. Когда солнце закрыто плотными облаками, суммарная радиация состоит только из рассеянной. При таких облаках рассеянная радиация лишь частично восполняет уменьшение прямой, и поэтому увеличение количества и плотности облаков в среднем сопровождается уменьшением суммарной радиации. Но при небольшой или тонкой облачности, когда солнце совсем открыто или не полностью закрыто облаками, суммарная радиация за счет увеличения рассеянной может оказаться больше, чем при ясном небе.

Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца: суммарная радиация изменяется почти прямо пропорционально изменению высоты солнца.

Солнечная радиация или ионизирующее излучение солнца

Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации.

Суммарная радиация существенно зависит также от широты места. С уменьшением широты ее суточные суммы увеличиваются, причем, чем меньше широта места, тем равномернее суммарная радиация распределяется по месяцам, т. е. тем меньше амплитуда ее годового хода. Например, в Павловске (φ = 60°) ее месячные суммы составляют от 12 до 407 кал/см 2 , в Вашингтоне (φ = 38,9°) – от 142 до 486 кал/см 2 , а в Такубае (φ = 19°) – от 307 до 556 кал/см 2 . Годовые суммы суммарной радиации также увеличиваются с уменьшением широты. Однако в отдельные месяцы суммарная радиация в полярных районах может быть больше, чем в более низких широтах. Например, в бухте Тихой в июне суммарная радиация на 37% больше, чем в Павловске, и на 5% больше чем в Феодосии.

Непрерывные наблюдения в Антарктиде за последние 7-8 лет показывают, что месячные суммы суммарной радиации в этом районе в самом теплом месяце (декабре) примерно в 1,5 раза больше, чем на таких же широтах в Арктике, и равны соответствующим суммам в Крыму и в Ташкенте. Даже годовые суммы суммарной радиации в Антарктиде больше, чем, например, в Санкт-Петербурге. Такой значительный приход солнечной радиации в Антарктиде объясняется сухостью воздуха, большой высотой антарктических станций над уровнем моря и высокой отражательной способностью снежной поверхности (70-90%), увеличивающей рассеянную радиацию

Разность между всеми приходящими на деятельную поверхность и уходящими от нее потоками лучистой энергии называется радиационным балансом деятельной поверхности. Иначе говоря, радиационный баланс деятельной поверхности представляет собой разность между приходом и расходом радиации на этой поверхности. Если поверхность горизонтальна, то к приходной части баланса относятся прямая радиация, приходящая на горизонтальную поверхность, рассеянная радиация и встречное излучение атмосферы. Расход радиации слагается из отраженной коротковолновой, длинноволнового излучения деятельной поверхности и отраженной от нее части встречного излучения атмосферы.

Радиационный баланс представляет собой фактический приход, или расход лучистой энергии на деятельной поверхности, от которого зависит, будет ли происходить ее нагревание или охлаждение. Если приход лучистой энергии больше ее расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то радиационный баланс отрицателен и поверхность охлаждается. Радиационный баланс в целом, как и отдельные составляющие его элементы, зависит от многих факторов. Особенно сильно на него влияют высота солнца, продолжительность солнечного сияния, характер и состояние деятельной поверхности, замутнение атмосферы, содержание в ней водяного пара, облачность и др.

Мгновенный (минутный) баланс днем обычно положителен, особенно летом. Примерно за 1 час до захода солнца (исключая зимнее время) расход лучистой энергии начинает превышать ее приход, и радиационный баланс становится отрицательным. Приблизительно через 1 час после восхода солнца он снова становится положительным. Суточный ход баланса днем при ясном небе примерно параллелен ходу прямой радиации. В течение ночи радиационный баланс обычно изменяется мало, но под влиянием переменной облачности он может изменяться значительно

Годовые суммы радиационного баланса положительны на всей поверхности суши и океанов, кроме районов с постоянным снежным или ледяным покровом, например Центральной Гренландии и Антарктиды. Севернее 40° северной широты и южнее 40° южной широты зимние месячные суммы радиационного баланса отрицательны, причем период с отрицательным балансом увеличивается в направлении к полюсам. Так, в Арктике эти суммы положительны только в летние месяцы, на широте 60° – в течение семи месяцев, а на широте 50° – в течение девяти месяцев. Годовые суммы радиационного баланса меняются при переходе с суши на море.

Радиационный баланс системы Земля-атмосфера представляет собой баланс лучистой энергии в вертикальном столбе атмосферы сечением 1 см 2 , простирающемся от деятельной поверхности до верхней границы атмосферы. Его приходная часть состоит из солнечной радиации, поглощенной деятельной поверхностью и атмосферой, а расходная – из той части длинноволнового излучения земной поверхности и атмосферы, которая уходит в мировое пространство. Радиационный баланс системы Земля-атмосфера положителен в поясе от 30° южной широты до 30° северной широты, а в более высоких широтах он отрицателен

Изучение радиационного баланса представляет большой практический интерес, так как этот баланс является одним из основных климатообразующих факторов. От его величины зависит тепловой режим не только почвы или водоема, но и прилежащих к ним слоев атмосферы. Знание радиационного баланса имеет большое значение при расчетах испарения, при изучении вопроса о формировании и трансформации воздушных масс, при рассмотрении влияния радиации на человека и растительный мир.

Страница 1 из 4

РАСПРЕДЕЛЕНИЕ ТЕПЛА И СВЕТА НА ЗЕМЛЕ

Солнце — звезда Солнечной системы, которая является для планеты Земля источником громадного количества тепла и ослепительного света. Несмотря на то, что Солнце находится от нас на значительном расстоянии и до нас доходит лишь небольшая часть его излучения, этого вполне достаточно для развития жизни на Земле. Наша планета вращается вокруг Солнца по орбите.

Солнечная радиация

Если с космического корабля наблюдать Землю в течение года, то можно заметить, что Солнце всегда освещает только какую-либо одну половину Земли, следовательно, там будет день, а на противоположной половине в это время будет ночь. Земная поверхность получает тепло только днем.

Наша Земля нагревается неравномерно.

Неравномерный нагрев Земли объясняется ее шарообразной формой, поэтому угол падения солнечного луча в разных районах различен, а значит, различные участки Земли получают различное количество тепла. На экваторе солнечные лучи падают отвесно, и они сильно нагревают Землю. Чем дальше от экватора, тем угол падения луча становится меньше, а следовательно, и меньшее количества тепла получают эти территории. Один и тот же по мощности пучок солнечного излучения обогревает у экватора гораздо меньшую площадь, так как он падает отвесно. Кроме того, лучи, падающие под меньшим углом, чем на экваторе, — пронизывая атмосферу, проходят в ней больший путь, вследствие чего часть солнечных лучей рассеивается в тропосфере и не доходит до земной поверхности. Все это свидетельствует о том, что при удалении от экватора к северу или к югу уменьшается температура воздуха, так как уменьшается угол падения солнечного луча.

23 4 Следующая >В конец >>

Коротковолновое излучение Солнца

Ультрафиолетовое и рентгеновское излучения исходят исходят в основном от верхних слоев хромосферы и короны. Это установили, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда испускает невидимое коротковолновое излучение, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское – в десятки и сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется изо дня в день, резко возрастая, когда на происходят вспышки.

Ультрафиолетовое и рентгеновское излучения частично ионизуют слои земной атмосферы, образуя на высотах 200 – 500 км от поверхности Земли ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на нем явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. После наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению и даже к временному прекращению радиосвязи.

Особое влияние ученые уделяют исследованию озонового слоя в земной атмосфере. Озон образуется в результате фотохимических реакций (поглощение света молекулами кислорода) в стратосфере, и там сосредоточена его основная масса. Всего в земной атмосфере примерно 3 10 9 т озона. Это очень мало: толщина слоя чистого озона у поверхности Земли не превысила бы и 3 мм! Но роль озонового слоя, простирающегося на высоте нескольких десятков километров над поверхностью Земли, исключительно велика, потому что он защищает все живое от воздействия опасного коротковолнового (и прежде всего ультрафиолетового) излучения Солнца. Содержание озона непостоянно на разных широтах и в разные времена года. Оно может уменьшаться (иногда очень значительно) в результате различных процессов. Этому могут способствовать, например, выбросы в атмосферу большого количества разрушающих озон хлорсодержащих веществ промышленного происхождения или аэрозольные выбросы, а также выбросы, сопровождающие извержения вулканов. Области резкого снижения уровня озона (“озоновые дыры”) обнаруживались над разными регионами нашей планеты, причем не только над Антарктидой и рядом других территорий Южного полушария Земли, но и над Северным. В 1992 г. стали появляться тревожные сообщения о временном истощении озонового слоя над севером европейской части России и уменьшении содержания озона над Москвой и Санкт-Петербургом. Ученые, осознавая глобальный характер проблемы, организуют в масштабах всей планеты экологические исследования, включающие прежде всего глобальную систему непрерывного наблюдения за состоянием озонового слоя. Разработаны и подписаны международные соглашения по охране озонового слоя и ограничению производства озоноразрушающих веществ.

Радиоизлучение Солнца

Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда обнаружилось, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучают хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Это радиоизлучение и достигает Земли. Радиоизлучение Солнца имеет две составляющие – постоянную, почти не меняющуюся по интенсивности, и переменную (всплески, “шумовые бури”).

Радиоизлучение спокойного Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время больших вспышек радиоизлучение Солнца возрастает в тысячи и даже в миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу.

Корпускулярное излучение Солнца

Ряд геофизических явлений (магнитные бури, т.е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) тоже связан с солнечной активностью. Но эти явления происходят через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а корпускулами (протонами и электронами, образующими разреженную плазму), которые с опозданием (на 1-2 сут) проникают в околоземное пространство, поскольку движутся со скоростями 400 – 1000 км/c.

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Солнечная корона – источник постоянного истечения плазмы (солнечного ветра), которое происходит во всех направлениях. Солнечный ветер, создаваемый непрерывно расширяющейся короной, охватывает движущиеся вблизи Солнца планеты и . Вспышки сопровождаются “порывами” солнечного ветра. Эксперименты на межпланетных станциях и искусственных спутниках Земли позволили непосредственно обнаружить солнечный ветер в межпланетном пространстве. Во время вспышек и при спокойном истечении солнечного ветра в межпланетное пространство проникают не только корпускулы, но и связанное с движущейся плазмой магнитное поле.