Опыты онлайн по физике. Занимательные опыты по физике

Занимательные опыты.
Внеклассное мероприятие для средних классов.

Внеклассное мероприятие по физике для средних классов «Занимательные опыты»

Цели мероприятия:

Развивать познавательный интерес, интерес к физике;
- развивать грамотную монологическую речь с использованием физических терминов, развивать внимание, наблюдательность, умение применять знания в новой ситуации;
- приучать детей к доброжелательному общению.

Учитель: Сегодня мы Вам покажем занимательные опыты. Внимательно смотрите и попытайтесь их объяснить. Наиболее отличившиеся в объяснении получат призы – хорошие и отличные оценки по физике.

(учащиеся 9 класса показывают опыты, а учащиеся 7-8 классов объясняют)

Опыт 1 «Не замочив рук»

Оборудование: тарелка или блюдце, монета, стакан, бумага, спички.

Проведение: Положим на дно тарелки или блюдца монету и нальем немного воды. Как достать монету, не замочив даже кончиков пальцев?

Решение: Зажечь бумагу, внести ее на некоторое время в стакан. Нагретый стакан перевернуть вверх дном и поставить на блюдце рядом с монетой.

Так как воздух в стакане нагрелся, то его давление увеличится, и часть воздуха выйдет. Оставшийся воздух через некоторое время охладится, давление уменьшится. Под действием атмосферного давления вода войдет в стакан, освобождая монету.

Опыт 2 «Подъем тарелки с мылом»

Оборудование: тарелка, кусок хозяйственного мыла.

Проведение: Налить в тарелку воды и сразу слить. Поверхность тарелки будет влажной. Затем кусок мыла, сильно прижимая к тарелке, повернуть несколько раз и поднять вверх. При этом с мылом поднимется и тарелка. Почему?

Объяснение: Подъем тарелки с мылом объясняется притяжением молекул тарелки и мыла.

Опыт 3 «Волшебная вода»

Оборудование: стакан с водой, лист плотной бумаги.

Проведение: Этот опыт называется «Волшебная вода». Наполним до краев стакан с водой и прикроем листом бумаги. Перевернем стакан. Почему вода не выливается из перевернутого стакана?

Объяснение: Вода удерживается атмосферным давлением, т. е. атмосферное давление больше давления, производимого водой.

Замечания: Опыт лучше получается с толстостенным сосудом.
При переворачивании стакана лист бумаги нужно придерживать рукой.

Опыт 4 «Нервущаяся бумага»

Оборудование: два штативами с муфтами и лапками, два бумажных кольца, рейка, метр.

Проведение: Бумажные кольца подвесим на штативах на одном уровне. На них положим рейку. При резком ударе метром или металлическим стержнем посередине рейки она ломается, а кольца остаются целыми. Почему?

Объяснение: Время взаимодействия очень мало. Поэтому рейка не успевает передать полученный импульс бумажным кольцам.

Замечания: Ширина колец – 3 – см. Рейка длиной 1 метр, шириной 15-20 см и толщиной 0,5 см.

Опыт 5 «Тяжелая газета»

Оборудование: рейка длиной 50-70 см, газета, метр.

Проведение: Положим на стол рейку, на нее полностью развернутую газету. Если медленно оказывать давление на свешивающийся конец линейки, то он опускается, а противоположный поднимается вместе с газетой. Если же резко ударить по концу рейки метром или молотком, то она ломается, причем противоположный конец с газетой даже не поднимается. Как это объяснить?

Объяснение: Сверху на газету оказывает давление атмосферный воздух. При медленном нажатии на конец линейки воздух проникает под газету и частично уравновешивает давление на нее. При резком ударе воздух вследствие инерции не успевает мгновенно проникнуть под газету. Давление воздуха на газету сверху оказывается больше, чем внизу, и рейка ломается.

Замечания: Рейку нужно класть так, чтобы ее конец 10 см свешивался. Газета должна плотно прилегать к рейке и столу.

Опыт 6

Оборудование: штатив с двумя муфтами и лапками, два демонстрационных динамометра.

Проведение: Укрепим на штативе два динамометра – прибора для измерения силы. Почему их показания одинаковы? Что это означает?

Объяснение: тела действуют друг на друга с силами равными по модулю и противоположными по направлению. (третий закон Ньютона).

Опыт 7

Оборудование: два одинаковых по размеру и массе листа бумаги (один из них скомканный).

Проведение: Одновременно отпустим оба листа с одной и той же высоты. Почему скомканный лист бумаги падает быстрее?

Объяснение: скомканный лист бумаги падает быстрее, так как на него действует меньшая сила сопротивления воздуха.

А вот в вакууме они падали бы одновременно.

Опыт 8 « Как быстро погаснет свеча»

Оборудование: стеклянный сосуд с водой, стеариновая свеча, гвоздь, спички.

Проведение: Зажжем свечу и опустим в сосуд с водой. Как быстро погаснет свеча?

Объяснение: Кажется, что пламя зальется водой, как только сгорит отрезок свечи, выступающий над водой, и свеча погаснет.

Но, сгорая, свеча уменьшается в весе и под действием архимедовой силы всплывает.

Замечание: К концу свечи прикрепить снизу небольшой груз (гвоздь) так, чтобы она плавала в воде.

Опыт 9 «Несгораемая бумага»

Оборудование: металлический стержень, полоска бумаги, спички, свеча (спиртовка)

Проведение: Стержень плотно обернем полоской бумаги и внесем в пламя свечи или спиртовки. Почему бумага не горит?

Объяснение: Железо, обладая хорошей теплопроводностью, отводит тепло от бумаги, поэтому она не загорается.

Опыт 10 «Несгораемый платок»

Оборудование: штатив с муфтой и лапкой, спирт, носовой платок, спички.

Проведение: Зажать в лапке штатива носовой платок (предварительно смоченный водой и отжатый), облить его спиртом и поджечь. Несмотря на пламя, охватывающее платок, он не сгорит. Почему?

Объяснение: Выделившаяся при горении спирта теплота полностью пошла на испарение воды, поэтому она не может зажечь ткань.

Опыт 11 «Несгораемая нитка»

Оборудование: штатив с муфтой и лапкой, перышко, обычная нить и нить вымоченная в насыщенном растворе поваренной соли.

Проведение: На нити подвесим перышко и подожжем ее. Нить сгорает, а перышко падает. А теперь подвесим перышко на волшебной нити и подожжем ее. Как видите, волшебная нить сгорает, но перышко остается висеть. Объясните секрет волшебной нити.

Объяснение: Волшебная нить была вымочена в растворе поваренной соли. Когда нить сгорела, перышко держится на сплавленных кристаллах поваренной соли.

Замечание: Нить должна быть вымочена 3-4 раза в насыщенном растворе соли.

Опыт 12 «Вода кипит в бумажной кастрюле»

Оборудование: штатив с муфтой и лапкой, бумажная кастрюля на нитках, спиртовка, спички.

Проведение: Подвесим бумажную кастрюлю на штативе.

Можно ли закипятить воду в этой кастрюле?

Объяснение: Вся теплота, выделяющаяся при горении, идет на нагревание воды. Кроме того, температура бумажной кастрюли не достигает температуры воспламенения.

Занимательные вопросы.

Учитель: Пока закипит вода, можно предложить залу вопросы:

    Что растет вниз вершиной? (сосулька)

    В воде купался, а сух остался. (Гусь, утка)

    Почему водоплавающие птицы не намокают в воде? (Поверхность перьев у них покрыта тонким слоем жира, а вода не смачивает жирную поверхность.)

    С земли и ребенок поднимет, а через забор и силач не перекинет.(Пушинка)

    Днем окно разбито, на ночь вставлено. (Прорубь)

Подводятся итоги опытов.

Выставление оценок.

2015 год-

Введение

Без сомнения, все наше знание начинается с опытов.
(Кант Эммануил. Немецкий философ г. г)

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

Название опыта Необходимые для опыта приборы и материалы Этапы проведения опыта Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

Налить на дно бокала солёной подкрашенной воды. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино. Из второго рожка налей таким же образом в бокал подсолнечного масла. Из третьего рожка налить слой крашенного спирта.

https://pandia.ru/text/78/416/images/image002_161.gif" width="86 height=41" height="41">, самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы : свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

https://pandia.ru/text/78/416/images/image005_65.jpg" width="300" height="225 src=">

Рисунок 3

Объяснение опыта

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы : плотная бумага, свеча, ножницы.

Этапы проведения опыта

Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Объяснение опыта

Змейка вращается, т. к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

https://pandia.ru/text/78/416/images/image007_56.jpg" width="300" height="225 src=">

Рисунок 5

Объяснение опыта

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы : 15 спичек.

Этапы проведения опыта

Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Объяснение опыта

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

https://pandia.ru/text/78/416/images/image009_55.jpg" width="300" height="283 src=">

Рисунок 7

https://pandia.ru/text/78/416/images/image011_48.jpg" width="300" height="267 src=">

Рисунок 9

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. Положить свечу спицей на края двух стаканов и уравновесить. Зажечь свечу с обоих концов.

Объяснение опыта

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

https://pandia.ru/text/78/416/images/image013_40.jpg" width="300" height="225 src=">

Рисунок 11

Демонстрационные эксперименты

1. Диффузия жидкостей и газов

Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах

Демонстрационный эксперимент «Наблюдение диффузии»

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

https://pandia.ru/text/78/416/images/image015_37.jpg" width="300" height="225 src=">

Рисунок 13

https://pandia.ru/text/78/416/images/image017_35.jpg" width="300" height="225 src=">

Рисунок 15

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

https://pandia.ru/text/78/416/images/image019_31.jpg" width="300" height="225 src=">

Рисунок 17

https://pandia.ru/text/78/416/images/image021_29.jpg" width="300" height="225 src=">

Рисунок 19

https://pandia.ru/text/78/416/images/image023_24.jpg" width="300" height="225 src=">

Рисунок 21

3.Шар Паскаля

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

Министерство образования и науки Челябинской области

Пластовский технологический филиал

ГБПОУ СПО «Копейский политехнический колледж им. С.В Хохрякова»

МАСТЕР - КЛАСС

«ОПЫТЫ И ЭКСПЕРЕМЕНТЫ

ДЛЯ ДЕТЕЙ»

Учебно - исследовательская работа

«Занимательные физические опыты

из подручных материалов»

Руководитель: Ю.В. Тимофеева, преподаватель физики

Исполнители: студенты группы ОПИ - 15

Аннотация

Физические опыты повышают интерес к изучению физики, развивают мышление, учат применять теоретические знания для объяснения различных физических явлений, происходящих в окружающем мире.

К сожалению, из-за перегруженности учебного материала на уроках физики занимательным опытам уделяется недостаточное внимание

С помощью опытов, наблюдений и измерений могут быть исследованы зависимости между различными физическими величинами.

Все явления, наблюдаемые при проведении занимательных опытов, имеют научное объяснение, для этого использовали фундаментальные законы физики и свойства окружающей нас материи.

ОГЛАВЛЕНИЕ

Введение

Основное содержание

Организация исследовательской работы

Методика проведения различных опытов

Результаты исследования

Заключение

Список использованной литературы

Приложения

ВВЕДЕНИЕ

Без сомнения, все наше знание начинается с опытов.

(Кант Эммануил - немецкий философ 1724-1804г.г)

Физика - это не только научные книги и сложные законы, не только огромные лаборатории. Физика - это еще интересные эксперименты и занимательные опыты. Физика - это фокусы, показанные в кругу друзей, это смешные истории и забавные игрушки-самоделки.

Самое главное, для физических опытов можно использовать любой подручный материал.

Физические опыты можно делать с шарами, стаканами, шприцами, карандашами, соломинками, монетами, иголками и т.д.

Опыты повышают интерес к изучению физики, развивают мышление, учат применять теоретические знания для объяснения различных физических явлений, происходящих в окружающем мире.

При проведении опытов приходится не только составлять план его осуществления, но и определять способы получения некоторых данных, самостоятельно собирать установки и даже конструировать нужные приборы для воспроизведения того или иного явления.

Но, к сожалению, из-за перегруженности учебного материала на уроках физики занимательным опытам уделяется недостаточное внимание, большое внимание уделяется теории и решению задач.

Поэтому было решено провести исследовательскую работу по теме «Занимательные опыты по физике из подручных материалов».

Цели исследовательской работы следующие:

  1. Освоить методики физических исследований, овладеть навыками правильного наблюдения и техникой физического эксперимента.

    Организация самостоятельной работы с различной литературой и другими источниками информации, сбор, анализ и обобщение материала по теме исследовательской работы.

    Научить обучающихся, применять научные знания для объяснения физических явлений.

    Привить любовь обучающимся к физике, усилить концентрацию их внимания на понимании законов природы, а не на механическом их запоминании.

При выборе темы исследования мы исходили из следующих принципов:

Субъективность - выбранная тема соответствует нашим интересам.

Объективность - выбранная нами тема актуальна и важна в научном и практическом отношении.

Посильность - задачи и цели, поставленные нами в работе, реальны и выполнимы.

1. ОСНОВНОЕ СОДЕРЖАНИЕ.

Исследовательская работа проводилась по следующей схеме:

Постановка проблемы.

Изучение информации из разных источников по данной проблеме.

Выбор методов исследования и практическое овладение ими.

Сбор собственного материала - комплектование подручных материалов, проведение опытов.

Анализ и обобщение.

Формулировка выводов.

В ходе исследовательской работы применялись следующие физические методики исследований:

1. Физический опыт

Проведение опыта состояло из следующих этапов:

Уяснение условий опыта.

Этот этап предусматривает знакомство с условиями проведения эксперимента, определение перечня необходимых подручных приборов и материалов и безопасных условий при проведении опыта.

Составление последовательности действий.

На этом этапе намечался порядок проведения опыта, в случае необходимости добавлялись новые материалы.

Проведение опыта.

2. Наблюдение

При наблюдении за явлениями, происходящими в опыте, мы обращали особое внимание на изменение физических характеристик, при этом мы получали возможность обнаруживать закономерные связи между различными физическими величинами.

3. Моделирование.

Моделирование является основой любого физического исследования. При проведении опытов мы моделировали различные ситуативные эксперименты .

Всего нами смоделировано, проведено и научно объяснено несколько занимательных физических опытов.

2.Организация исследовательской работы:

2.1 Методика проведения различных опытов:

Опыт № 1 Свеча за бутылкой

Приборы и материалы : свеча, бутылка, спички

Этапы проведения опыта

Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на 20-30 см.

Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды.

Опыт № 2 Вертящаяся змейка

Приборы и материалы: плотная бумага, свеча, ножницы.

Этапы проведения опыта

Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки.

Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Приборы и материалы : 15 спичек.

Этапы проведения опыта

Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола.

Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Опыт № 4 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя.

Положить свечу спицей на края двух стаканов и уравновесить.

Зажечь свечу с обоих концов.

Опыт №5 Толстый воздух

Мы живём благодаря воздуху, которым мы дышим. Если тебе не кажется это достаточно волшебным, проделай этот эксперимент, чтобы узнать, на какую ещё магию способен воздух.

Реквизит

Защитные очки

Сосновая дощечка 0,3х2,5х60 см (можно приобрести в любом магазине пиломатериалов)

Газетный лист

Линейка

Подготовка

Начинаем научное волшебство!

Надень защитные очки. Объяви зрителям: «В мире есть два вида воздуха. Один из них - тощий, а другой - жирный. Сейчас я с помощью жирного воздуха совершу волшебство».

Положи на стол дощечку так, чтобы примерно 6 дюймов (15 см) выступало на край стола.

Произнеси: «Толстый воздух садись на дощечку». Ударь по концу дощечки, который выступает за край стола. Дощечка подпрыгнет в воздух.

Скажи зрителям, что на дощечку сел, должно быть, тощий воздух. Опять положи дощечку на стол как в пункте 2.

Положи на дощечку газетный лист, как показано на рисунке, чтобы дощечка была посередине листа. Разгладь газету, чтобы между ней и столом не осталось воздуха.

Снова скажи: «Толстый воздух, садись на дощечку».

Ударь по выступающему концу ребром ладони.

Опыт №6 Непромокаемая бумага

Реквизит

Бумажное полотенце

Стакан

Пластиковая миска или ведёрко, в которое можно налить достаточное количество воды, чтобы она полностью покрыла стакан

Подготовка

Разложи всё необходимое на столе

Начинаем научное волшебство!

Объяви зрителям: "C помощью своего магического мастерства я смогу сделать так, чтобы кусочек бумаги остался сухим».

Сомни бумажное полотенце и положи его на дно стакана.

Переверни стакан и убедись, что комок бумаги остаётся на месте.

Произнеси над стаканом какие-нибудь волшебные слова, например: «магические силы, оградите бумагу от воды». Потом медленно опусти перевёрнутый стакан в миску с водой. Старайся держать стакан как можно ровнее, пока он не скроется под водой полностью.

Вытащи стакан из воды и стряхни с него воду. Переверни стакан дном книзу и достань бумагу. Дай зрителям пощупать её и убедиться, что она осталась сухой.

Опыт №7 Летающий мячик

Видел ли ты, как на выступлении фокусника человек поднимается в воздух? Попробуй провести подобный эксперимент.

Обрати внимание: Для этого эксперимента понадобиться фен и помощь взрослых.

Реквизит

Фен (пользоваться должен только взрослый помощник)

2 толстые книги или другие тяжёлые предметы

Мячик для пинг-понга

Линейка

Взрослый ассистент

Подготовка

Установи фен на столе вверх отверстием, откуда дует горячий воздух.

Чтобы установить его в таком положении, используй книги. Проверь, чтобы они не закрывали отверстие сбоку, где воздух засасывается в фен.

Включи фен в розетку.

Начинаем научное волшебство!

Попроси кого-нибудь из взрослых зрителей стать твоим ассистентом.

Объяви зрителям: «Сейчас я заставлю обыкновенный пинг-понговый шарик летать по воздуху».

Возьми шарик в руку и отпусти, чтобы он упал на стол. Скажи зрителям: «Ой! Я забыл сказать волшебные слова!»

Произнеси над мячиком волшебные слова. Пусть твой ассистент включит фен на полную мощность.

Аккуратно помести шарик над феном в струю воздуха, примерно в 45 см от выдувающего отверстия.

Советы учёному волшебнику

В зависимости от силы выдува, тебе, возможно, придётся поместить шарик немного выше или ниже, чем указано.

Что ещё можно сделать

Попробуй проделать тоже самое с мячиком разного размера и массы. Одинаково ли хорошо будет получаться опыт?

2. 2 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ:

1) Опыт № 1 Свеча за бутылкой

Объяснение:

Свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому-то наша свеча и догорит до конца .

2) Опыт № 2 Вертящаяся змейка

Объяснение:

Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

3) Опыт №3 Пятнадцать спичек на одной

Объяснение:

Для того, чтобы поднять все спички, нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку.


4) Опыт № 4 Парафиновый мотор

Объяснение:

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

5) Опыт №5 Толстый воздух

Когда ты ударяешь по дощечке в первый раз, она подпрыгивает. Но если ударить по дощечке, на которой лежит газета, дощечка ломается.

Объяснение:

Когда ты разглаживаешь газету, ты удаляешь из-под неё почти весь воздух. Вместе с тем большое количество воздуха сверху газеты давит на неё с большой силой. Когда ты ударяешь по дощечке, она ломается, потому что давление воздуха на газету не даёт дощечке подняться вверх в ответ на приложенную тобой силу.

6) Опыт №6 Непромокаемая бумага

Объяснение:

Воздух занимает определённый объём. В стакане есть воздух, в каком бы положении он не находился. Когда ты переворачиваешь стакан кверху дном и медленно опускаешь в воду, воздух остаётся в стакане. Вода из-за воздуха не может попасть в стакан. Давление воздуха оказывается больше, чем давление воды, стремящейся проникнуть внутрь стакана. Полотенце на дне стакана остаётся сухим. Если стакан под водой перевернуть набок, воздух в виде пузырьков будет выходить из него. Тогда сможет попасть в стакан.


8) Опыт №7 Летающий мячик

Объяснение:

На самом деле этот трюк не противоречит силе тяжести. В нём демонстрируется важная способность воздуха, называемая принципом Бернулли. Принцип Бернулли - закон природы, согласно которому любое давление любого текучего вещества, в том числе воздуха, уменьшается с ростом скорости его движения. Иначе говоря при низкой скорости потока воздуха он имеет высокое давление.

Воздух, выходящий из фена, движется очень быстро, и следовательно его давление невелико. Мячик со всех сторон окружён областью низкого давления, которая образует конус у отверстия фена. Воздух вокруг этого конуса обладает более высоким давлением, и не даёт мячику выпасть из зоны низкого давления. Сила тяжести тянет его вниз, а сила воздуха тянет его вверх. Благодаря совместному действию этих сил, шарик и зависает в воздухе над феном.

ЗАКЛЮЧЕНИЕ

Анализируя результаты занимательных опытов, мы убедились, что знания полученные на занятиях по физике вполне применимы для решения практических вопросов.

С помощью опытов, наблюдений и измерений были исследованы зависимости между различными физическими величинами.

Все явления, наблюдаемые при проведении занимательных опытов, имеют научное объяснение, для этого мы использовали фундаментальные законы физики и свойства окружающей нас материи.

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики и других технических дисциплин предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

В соответствии с поставленной задачей все опыты проведены с использованием только дешевых, малогабаритных подручных материалов.

По итогам учебно - исследовательской работы можно сделать следующие выводы:

  1. В различных источниках информации можно найти и самим придумать много занимательных физических опытов, выполняемых с помощью подручного оборудования.

    Занимательные опыты и самодельные физические приборы увеличивают спектр демонстраций физических явлений.

    Занимательные опыты позволяют проверить законы физики и теоретические гипотезы.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

М. Ди Специо «Занимательные опыты», ООО «Астрель», 2004г.

Ф.В. Рабиза «Забавная физика», Москва, 2000г.

Л. Гальперштейн «Здравствуй, физика», Москва, 1967г.

А. Томилин «Хочу все знать», Москва, 1981г.

М.И. Блудов «Беседы по физике», Москва, 1974г.

Я.И. Перельман «Занимательные задачи и опыты», Москва, 1972г.

ПРИЛОЖЕНИЯ

Диск:

1. Презентация «Занимательные физические опыты из подручных материалов»

2. Видеоролик «Занимательные физические опыты из подручных материалов»

1. Цилиндры со стругом.

Притяжение между молекулами становится заметным только тогда, когда они находятся очень близко друг к другу, на расстояниях, сравнимых с размером самих молекул. Два свинцовых цилиндра сцепляются вместе, если их вплотную прижать друг к другу ровными, только что срезанными поверхностями. При этом сцепление может быть настолько прочным, что цилиндры не удаётся оторвать друг от друга даже при большой нагрузке.

2. Определение архимедовой силы.

1. К пружине подвешивают небольшое ведёрко и тело цилиндрической формы. Растяжение пружины по положению стрелки отмечают меткой на штативе. Она показывает вес тела в воздухе.

2. Приподняв тело, под него подставляют отливной сосуд, наполненный водой до уровня отливной трубки. После чего тело погружают целиком в воду. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в воде. В данном случае на тело, наряду с силой тяжести, действует ещё и сила, выталкивающая его из жидкости.

3. Если в ведёрко перелить воду из стакана (т.е. ту, которую вытеснило тело),то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что, сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела.

3. Поднесём дугообразный магнит к листу картона. Магнит не притянет его. Затем положим картон на мелкие железные предметы и снова поднесём магнит. Лист картона поднимется, а за ним и мелкие железные предметы. Это происходит потому, что между магнитом и мелкими железными предметами образуется магнитное поле, которое действует и на картон, под действием этого поля картон притягивается к магниту.

4. Положим дугообразный магнит на край стола. Тонкую иглу с ниткой положим на один из полюсов магнита. Затем осторожно потянем иглу за нить, пока игла не соскочит с полюса магнита. Игла зависает в воздухе. Это происходит потому, что находясь в магнитном поле, иголка намагничивается и притягивается к магниту.

5. Действие магнитного поля на катушку с током.

Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

У нас имеется катушка, подвешенная на гибких проводах, которые присоединены к источнику тока. Катушка помещена между полюсами дугообразного магнита, т.е. находится в магнитном поле. Взаимодействие между ними не наблюдается. При замыкании электрической цепи катушка приходит в движение. Направление движения катушки зависит от направления тока в ней и от расположения полюсов магнита. В данном случае ток направлен по часовой стрелке и катушка притянулась. При изменении направления тока на противоположное катушка оттолкнётся.

Точно так же катушка изменит направление движения при изменении расположения полюсов магнита (т.е. изменения направления линий магнитного поля).

Если убрать магнит, то при замыкании цепи катушка двигаться не будет.

Значит, со стороны магнитного поля на катушку с током действует некоторая сила, отклоняющая его от первоначального положения.

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

6. Прибор для демонстрации правила Ленца.

Выясним, как направлен индукционный ток. Для этого воспользуемся прибором, который представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Возьмём дугообразный магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом, а южным.

Объясним наблюдаемое явление.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны. Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему. Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону. Следовательно, магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

На основании результатов рассмотренных опытов было сформулировано правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

7. Шар с кольцом.

О том, что все тела состоят из мельчайших частиц между которыми есть промежутки, позволяет судить следующий опыт по изменению объёма шара при нагревании и охлаждении.

Возьмём стальной шарик, который в ненагретом состоянии проходит сквозь кольцо. Если шарик нагреть, то, расширившись, он уже сквозь кольцо не пройдёт. Через некоторое время шарик, остыв, уменьшится в объёме, а кольцо, нагревшись от шарика, расширится, и шарик вновь пройдёт сквозь кольцо. Это происходит потому, что все вещества состоят из отдельных частичек, между которыми есть промежутки. Если частицы удаляются друг от друга, то объём тела увеличивается. Если частицы сближаются, объём тела уменьшается.

8. Давление света.

На лёгкие крылышки, находящиеся в сосуде, из которого откачан воздух, направляют свет. Крылышки приходят в движение. Причина светового давления заключается в том, что фотоны обладают импульсом. При поглощении их крылышками они передают им свой импульс. Согласно закону сохранения импульса импульс крылышек становится равным импульсу поглощённых фотонов. Поэтому покоящиеся крылышки приходят в движение. Изменение импульса крылышек означает согласно второму закону Ньютона, что на крылышки действует сила.

9. Источники звука. Звуковые колебания.

Источниками звука являются колеблющиеся тела. Но не всякое колеблющееся тело является источником звука. Не издаёт звука колеблющейся шарик, подвешенный на нити, т.к его колебания происходят с частотой меньше 16 Гц. Если по камертону ударить молоточком, то камертон зазвучит. Значит его колебания лежат в звуковом диапазоне частот от 16 Гц до 20 кГц. Поднесём к звучащему камертону шарик, подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей.

10. Электрофорная машина.

Электрофорная машина является источником тока, в котором механическая энергия превращается в электрическую.

11. Прибор для демонстрации инерции.

Прибор позволяет учащимся усвоить понятие импульса силы и показать его зависимость от действующей силы и времени её действия.

На торец стойки с лункой положим пластинку, а на пластинку - шарик. Медленно сдвинем пластинку с шариком с торца стойки и увидим одновременное движение шарика и пластинки, т.е. шарик по отношению к пластинке неподвижен. Значит результат взаимодействия шарика и пластинки зависит от времени взаимодействия.

На торец стойки с лункой положим пластинку так, чтобы её торец коснулся плоской пружины. На пластинку положим шарик на место соприкосновения пластинки с торцом стойки. Придерживая левой рукой площадку, слегка оттянем пружину от пластинки и отпустим её. Пластинка вылетает из под шарика, а шарик остаётся на месте в лунке стойки. Значит результат взаимодействия тел зависит не только от времени, но и от силы взаимодействия.

Также этот опыт служит косвенным доказательством 1 закона Ньютона - закона инерции. Пластинка после вылета далее движется по инерции. А шарик сохраняет состояние покоя, при отсутствии внешнего воздействия на него.

Налейте воду в стакан, обязательно до самого края. Накройте листом плотной бумаги и аккуратно придерживая его, очень быстро переверните стакан кверху дном. На всякий случай, проделывайте все это над тазом или в ванной. Теперь уберите ладонь… Фокус! по-прежнему остается в стакане!

Дело в давлении атмосферного воздуха. Давление воздуха на бумагу снаружи больше давления на нее изнутри стакана и, соответственно, не позволяет бумаге выпустить воду из емкости.

Опыт Рене Декарта или пипетка-водолаз

Этому занимательному опыту около трехсот лет. Его приписывают французскому ученому Рене Декарту.

Вам понадобится пластиковая бутылка с пробкой, пипетка и вода. Наполните бутылку , оставив два-три миллиметра до края горлышка. Возьмите пипетку, наберите в нее немного воды и опустите в горлышко бутылки. Она должна своим верхним резиновым концом быть на уровне или чуть выше уровня в бутылке. При этом нужно добиться, чтобы от легкого толчка пальцем пипетка погружалась, а потом сама медленно всплывала. Теперь закройте пробку и сдавите бока бутылки. Пипетка пойдет на дно бутылки. Ослабьте давление на бутылку, и она снова всплывет.

Дело в том, что мы немного сжали воздух в горлышке бутылки и это давление передалось воде. проникла в пипетку — она стала тяжелее (так как вода тяжелее воздуха) и утонула. При прекращении давления сжатый воздух внутри пипетки удалил лишнюю , наш «водолаз» стал легче и всплыл. Если в начале опыта «водолаз» вас не слушается, значит, надо отрегулировать количество воды в пипетке. Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки входит в пипетку, а при ослаблении нажима выходит из нее.