Опыты доказывающие пластичность мозга. Пластичность мозга: как умнеет ребенок. Нейропластичность: перестраиваем мозг



В предыдущей статье мы определили несколько областей мозга, которые являются ключевыми для наших когнитивных способностей, и нанесли их на карту мозга. Когнитивная нейробиология достигла пика своего развития в 1990-е годы, когда были изобретены приборы, позволяющие получить изображения мозга, и сосредоточилась на картографии мозга. Разные области мозга отвечают за разные функции.

Противники картографии мозга в шутку называют ее современной френологией. Френологи, эти шарлатаны XIX века, судили о способностях людей по строению и форме черепа. Придавая решающее значение форме головы и черепа, они не просто культивировали лженауку, но и лили воду на мельницу расово-биологических учений начала XX века.

И все же сравнение с френологией несколько упрощает проблему. Верной Маунткастл, один из выдающихся неврологов XX века, сам не занимаясь изображением мозга, отчасти выступил в защиту френологов 86 . По его мнению, френология опирается на два основных постулата. Первый из них: различные функции локализованы в различных областях мозга. И второй: функции мозга отражаются на форме черепа. Второй постулат - абсолютный нонсенс, но первый постулат можно считать корректным и теоретически очень важным.

Одно из первых исследований, показавших, как локализованы функции мозга, провел французский невролог Поль Брока. Ему попался пациент, который внезапно лишился дара речи. После смерти пациента Брока обследовал его мозг и обнаружил кровотечение - в нижней части лобной доли. Эта часть мозга сейчас известна как «зона Брока». Однако в то время Поль Брока еще полагал, согласно традиционным представлениям, что эта зона является симметричной для обоих полушарий. Но затем, опираясь на данные многочисленных наблюдений, он решительно заявил о том, что функция речи принадлежит левому полушарию. Открытие моторного центра речи было первым анатомическим доказательством локализации функции мозга.

В начале XX века Корбиниан Бродман на основании огромного сравнительно-анатомического материала разделил поверхность мозговых полушарий на множество более или менее автономных участков, отличающихся один от другого по клеточному строению и, следовательно, по функциям. Он составил одну из первых карт мозга, разделив его на 52 области. Кстати, эту карту используют и поныне 87 .

Методики позитронно-эмиссионной томографии (ПЭТ) и функциональной магнитно-резонансной томографии (ФМРТ) обеспечили прорыв в картировании мозга. Опираясь на новые знания, ученые со временем отказались от упрощенного представления о том, что одна область мозга отвечает за определенную функцию. Наоборот, каждая функция соотносится с сетью областей, а одна и та же область может входить во множество разных сетей. Но фиксация на картах осталась, и так или иначе в таком системном описании проявляются следы статичного мышления. Карты изображают нечто неизменное. Горы и реки находятся там, где они находятся. И только в последнее время наука обратила внимание на то, что карты могут меняться, притом самым существенным образом.

Как перекраиваются карты мозга

Мозг изменяется - и это не новость, а бесспорный научный факт. Если, допустим, школьник к среде не выучил урок, но пришел домой и позанимался, а к четвергу он уже знает, что представляют собой семенные растения, то его мозг изменился. Больше информацию хранить негде (за исключением шпаргалок). Нас же прежде всего интересует, когда, где и как изменяется мозг.

Мы уже говорили о том, что функциональные карты мозга перекраиваются, когда мозг лишается притока информации.

Если человек, к примеру, потерял какой-то орган или часть тела, и сенсорная область мозга больше не получает оттуда информацию, окружающие области мозга начинают посягать на этот участок. Если сигналы от указательного пальца перестают поступать в мозг, то эта область соответственно сужается. Зато соседняя область, которая получает сигналы от среднего пальца, наоборот, расширяется.

Речь идет не о нейронах, которые мигрируют из одной области мозга в другую. Большое количество новых нейронов отмирает вскоре после окончания миграции. В долгосрочной перспективе около 50 процентов оставшихся клеток также отмирают. Считается, что судьба новых клеток зависит от характера образованных ими связей и их отсев служит механизмом поддержания постоянства численности нейронов.

Конечно, новообразование нейронов в определенных областях мозга возможно, но нет доказательств того, что они будут наделены какими-либо функциями в определенных зонах коры головного мозга. Изменения в первую очередь наблюдаются в структуре нейронов, где одни маленькие отростки отмирают, и их замещают другие. На отростках находятся синапсы, которые контактируют с другими нейронами. Изменения отростков и синапсов приводят, в свою очередь, к изменению функции нейронов. Если мы взглянем на мозг сверху, то увидим, что сенсорная зона мозга, которая сначала принимала сигналы от указательного пальца, затем стала получать сигналы от среднего пальца. Таким образом, карта мозга перекраивается 88 .

Возможно, за счет этих же механизмов зрительные области мозга у слепых активизируются при чтении текстов, набранных по методу Брайля. Но тот факт, что зрительные области активизируются, не обязательно свидетельствует о том, что слепые с их помощью анализируют сенсорную информацию. До конца не ясно, какие процессы происходят в этих зонах. Возможно, зрительные области активируются за счет механизма бессознательной визуализации.

Основополагающий вопрос заключается в том, как изменяются различные участки мозга. Или они изначально запрограммированы на выполнение специальной задачи, или их функции зависят от характера получаемых стимулов. Какой фактор играет первостепенную роль в этом процессе - наследственность или среда, природа или воспитание?

Весомый вклад в изучение этих механизмов внесла научная группа исследователей из Массачусетско- го технологического института под руководством Мри- ганки Сура (штат Массачусетс, США). Ученые делали хорькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору 89 . Цель эксперимента - выяснить, какие структурные и функциональные изменения происходят в слуховой зоне при передаче ей зрительной информации. Это привело к перестройке слуховой области, и по своей структуре она стала больше напоминать зрительную. Функция сигналов также переориентировалась. Оказалось, что животные, передвигаясь, использовали слуховую область для того, чтобы видеть. Никто из ученых не считает, что в этом «виноваты» только природа или только воспитание, но результаты Мриганки Сура подтверждают важность сенсорной стимуляции для организации мозга, что в свою очередь подчеркивает неоценимую роль окружающей среды 90 .

Эффект стимуляции

Приведенный выше пример показывает, как перекраивается карта мозга, когда в организме происходят структурные изменения, например какая-либо функция прекращает свою работу и мозг перестает получать информацию от того или иного органа. Другой тип изменений вызван дополнительной стимуляцией, например при тренировке специальной функции. О феномене пластичности нам известно не так много. Первые работы в этом направлении проводились в 1990-е годы.

Например, тренировали обезьян - у них развивали способность различать тональность звука. Обезьяны осваивают этот навык. Последовательно услышав два звука, они определяют, одной ли они тональности, а затем нажимают на кнопку. Исследование показало, что поначалу, когда звуки сильно отличались друг от друга, обезьяны успешно справлялись с тестом. Зато они почти не различали звуки, близкие по тональности. Через несколько недель после сотен тренировок обезьяны начали различать и звуки, очень близкие по тональности. Когда ученые решили выяснить, какие нейроны слуховой области активируются при выполнении этой задачи, оказалось, что после нескольких недель тренировок количество активированных нейронов возросло. То есть область, которая активировалась в процессе тестов, после тренировок расширилась 91 .

Похожий эксперимент проводился на обезьянах, когда они отрабатывали определенное движение пальца. После нескольких недель тренировок моторная область, ответственная за движение этого пальца, увеличилась. Эти эксперименты показывают, что карта мозга в высшей степени подвержена изменениям 92 .

Музыка и жонглирование

Наиболее существенные изменения ученые обнаружили в связи с совершенствованием моторных навыков. Исследователи изучали изменения, происходящие в мозге в процессе длительных упражнений на музыкальных инструментах. У музыкантов, играющих на смычковых инструментах, область, принимающая сенсорный импульс от левой руки, больше, чем та же область у не музыкантов 93 .

Сара Бенгтссон и Фредрик Уллен (Каролинский институт, Стокгольм) также обнаружили, что проводящие пути в белом веществе мозга, по которым передаются моторные сигналы, у пианистов более развиты. Причем различия оказались тем существеннее, чем дольше упражнялись музыканты 94 .

Но при упражнениях на музыкальном инструменте речь идет об очень длительном воздействии на мозг. А как действуют на людей более короткие тренировки? В одном исследовании испытуемые тренировали специфический навык - они сгибали пальцы в определенной последовательности: средний палец - мизинец - безымянный палец - средний палец - указательный палец и так далее 95 . Поначалу они совершали много ошибок. Через десять дней они уже освоили это упражнение и начали выполнять его в хорошем темпе и почти без ошибок. Одновременно наблюдался рост активности в основной двигательной зоне коры головного мозга, то есть в той области, которая управляет мускулатурой.

В научной литературе часто ссылаются на результаты экспериментов с жонглерами (о чем уже упоминалось во вступлении) 96 . Согласно этим исследованиям, область затылочной доли увеличивалась уже через три месяца после начала тренировок. Это исследование также демонстрирует, что непродолжительные тренировки могут привести к столь серьезным изменениям, что их видно даже при магнитно-резонансном сканировании, которое дает не слишком точные показания. Впрочем, тот факт, что изменения не всегда можно зафиксировать, также демонстрирует, что пластичность - это обоюдоострый меч; пассивность тоже оказывает влияние на мозг.

Что такое use и что такое it?

Данные экспериментов с жонглерами и музыкантами убеждают нейрофизиологов и психологов в непреложности тривиальной истины «use it or lose it» («используй, иначе потеряешь»). Даже если мы согласимся с тем, что изменения в мозге зависят от того, чем мы занимаемся, этот факт не следует чересчур переоценивать. Надо в первую очередь задаться вопросом, что означает «используй» в данном контексте? Все ли виды активной деятельности равноценны? Ведь никто не усомнится в пользе активного образа жизни, все знают, что тренировки и упражнения очень благотворны для физического здоровья. Когда после перелома на ногу накладывают гипс, нам очень трудно вернуться к здоровому образу жизни - неподвижность и гипс атрофируют наши мышцы. В разных ситуациях мы даем разную нагрузку на опорно-двигательный аппарат. Одно дело - ходить на работу и проводить весь день в офисе, и другое дело - тренироваться в гимнастическом зале, давая полную нагрузку на все мышцы.

Насколько интенсивной и продолжительной должна быть интеллектуальная тренировка, чтобы мы почувствовали результаты? Ведь между занятиями в фит- нес-клубе и профессиональной силовой тренировкой есть большая разница.

Следует также помнить о том, что «it» относится не ко всему мозгу. « It» в данном случае апеллирует к специфическим функциям и специфическим областям мозга. Если мы начнем тренироваться, чтобы различать тональность звуков, то изменения произойдут в слуховых областях, а не в лобной или затылочной долях. И снова можно провести параллель с физической тренировкой. Если сгибать и разгибать правую руку, с тяжелой гантелью, то у нас разовьются бицепсы именно правой руки при условии, что гантель достаточно тяжелая, что упражнения проводятся регулярно и что тренировка длится несколько недель. Но мы не можем обобщить, что «упражнение с гантелями развивает мускулатуру» или «полезно для физического здоровья». Это будет не вполне корректно.

У музыкантов, играющих на смычковых инструментах, увеличена сенсорная область, отвечающая за сигналы от левой, а не от правой руки. Упражнения с жонглированием развивают координацию движений и визуально-пространственную ориентацию.

Итак, фразу « use it or lose it» можно истолковать предельно упрощенно. Например, «для мозга полезно делать то-то и то-то…». Если определенный тип деятельности оказывает воздействие на мозг, это не обязательно означает, что мы тренируем мозг и улучшаем показатели интеллекта. Специфические функции помогают развиваться специфическим областям.

В предыдущей главе мы пытались объяснить парадокс: каким образом интеллект каменного века справляется с информационным потоком. Возможное объяснение этого феномена заключается в том, что мозг, вероятно, приспосабливается к среде и к тем требованиям, которые она выдвигает. В этой же главе мы привели немало примеров того, как мозг может приспосабливаться к среде и меняться в процессе тренировок и упражнений. Пластичность может быть присуща и лобной, и теменной долям, включая те ключевые области, которые связаны с объемом рабочей памяти. Так что теоретически тренировать рабочую память можно. Возможно, пластичность - это результат адаптации к той определенной среде, в которой мы находимся. И в то же время феномен пластичности можно использовать вполне целенаправленно, развивая определенные функции.

Итак, если мы хотим тренировать свой мозг, нам придется выбрать функцию и область. Умение жонглировать едва ли пригодится в повседневной жизни, и, наверное, не имеет особого смысла развивать этот навык. Лучше потратить время на области, отвечающие за общие функции. Мы уже знаем, что определенные области в теменной и лобной долях носят полимодальный характер, то есть не связаны с какой-либо специфической сенсорной стимуляцией, а активируются при выполнении задач как на слух, так и на зрение. Тренировка полимодальной области принесла бы больше пользы, чем тренировка области, отвечающей, например, только за слух. Эти ключевые области также имеют отношение к тому, что наша рабочая память ограниченна.

Если тренировать и развивать эти области, это пошло бы на благо нашим интеллектуальным функциям. Но реально ли это? Если бы мы могли путем упражнений повлиять на эту область, являющуюся «узким местом», достигли бы мы серьезных результатов? В каких жизненных ситуациях нас чаще всего подводит память?

ПРИМЕЧАНИЯ

86 О френологии см.: Mountcastle,V. The evolution of ideas concerning the function of the neocortex’, Cerebral Cortex, 1995, 5:289-295.
87 Brodmann, K. Vergleichende Lokalisationslehre der Gros- shirnrinde. Leipzig: Barth. 1909.
88 О пластичности в сенсорных областях см.: Kaas, J.H., Merzenich, М.М. & Killackey, Н.Р. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Annual Review of Neuroscience, 1983, 6:325-356; Kaas, J.H. Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience. 1991, 14:137-167.
89 О трансплантации зрительного нерва см.: Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature. 2000, 404:841-847.
90 О поведенческих эффектах см.: von Melchner, L., Pallas, S.L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature. 2000, 404: 871-876.
91 0 тренинге и его воздействии на слуховую зону см.: Recanzone, G.H., Schreiner, С. Е. & Merzenich, М.М. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience. 1993,13:87-103.
92 О двигательном тренинге и его воздействии на кору головного мозга см.: Nudo , R.J., Milliken, G. W., Jenkins, W. M., & Merzenich, М.М. Use- dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience. 1996,16, 785-807.
93 См. исследование о музыкантах, играющих на смыч ковых инструментах: Elbert, Т., Pantev, С., Wienbruch, С., Rockstroh, В. & Taub, Е. Increased cortical representation of the fingers of the left hand in string players. Science. 1995, 270.
94 Об исследовании белого вещества у пианистов см.: Bengtsson, S.L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H. & Ullen, F. Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience. 2005,8.
95 О функциональном магнитно-резонансном исследовании заучивания движений пальцев см.: Kami, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R. & Ungerleider, L.G. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995, 377:155-158.
96 О жонглировании см.: Draganski, В., Gaser, С., Busch, V., Schuierer, G., Bogdahn, U. & May, A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004, 427: 311-312.

Торкель Клингберг

Музыка мозга. Правила гармоничного развития Прен Анет

Пластичность мозга

Пластичность мозга

Так почему же мы можем играть на собственном мозге, как на музыкальном инструменте? Главное – это пластичность мозга, его способность изменяться.

До начала 1990-х большинство исследователей считали, что все нервные клетки человек получает при рождении и что после двадцати пяти лет они начинают отмирать, постепенно ослабляя прочность и сложность нервных связей.

Но сегодня благодаря передовым технологиям мнение ученых по этому вопросу радикально изменилось. Теперь известно, что человеческий мозг содержит около сотни миллиардов нейронов, соединенных между собой через так называемые синапсы, и что на протяжении всей нашей жизни каждый день в одной только зоне памяти создается не менее двухсот новых нервных клеток. Иными словами, наш мозг пребывает в состоянии перманентных изменений.

Наш мозг находится в состоянии перманентных изменений.

Кроме того, еще несколько лет назад исследователи полагали, что за речь, чувства, зрение, равновесие и т. д. отвечают конкретные центры. Сегодня ученые пришли к выводу, что это не совсем так. Базовые функции, управляющие нашей моторной активностью и обратной сенсорной связью, действительно локализованы в конкретных зонах мозга, однако сложные когнитивные функции распределены по разным его участкам. Все восемь клавиш, представленных в этой книге, соотносятся с различными зонами мозга, однако ни одна клавиша не ограничена какой-то одной его частью.

Например, функция речи – результат командной деятельности ряда участков мозга, способных сотрудничать друг с другом разными способами. Именно этим объясняется, почему каждый человек использует свои уникальные речевые конструкции и почему структура нашей речи меняется в зависимости от окружения.

Кроме того, мозг постоянно реорганизуется. Исследователи обнаружили, что ослабленные мозговые функции можно восстановить с помощью других участков мозга. Психиатр Норман Дойдж считает одним из величайших открытий XX века тот факт, что практическое и теоретическое научение и действие способны «включать и выключать наши гены, формируя анатомию нашего мозга и наше поведение». А невролог Вилаянур Субраманиан Рамачандран называет сделанные в последние годы открытия в области мозговой деятельности пятой революцией.

Практическое и теоретическое научение и действие способны включать и выключать наши гены.

Однако надо признать: сегодня ученые стоят лишь на пороге познания бесчисленных чудес человеческого мозга. И прочтя эту книгу, вы придете к пониманию лишь малой, хоть и чрезвычайно важной, доли этих чудес.

В этой книге говорится и о биологических, и о ментальных составляющих мозга, но в основном все-таки о последних. Биологическая часть касается химии и физики мозга, нейромедиаторов, таких как серотонин и дофамин, а также пластичности нейронов. Ментальная составляющая касается нашей способности думать и действовать, а также познания в широком смысле этого слова.

Здесь читатель может задаться вопросом: «Но я и так немало знаю о мозге – что мне еще нужно знать?» Поверьте, что вас ждет масса сюрпризов, поскольку сегодня многие укоренившиеся представления о мозге безнадежно устарели. Например, раньше ученые считали, что чем глубже они проникнут в мозг, тем дальше смогут продвинуться в познании эволюции человека, и что «цивилизованная» кора головного мозга отвечает за базовые и примитивные функции. Так вот: вам придется пересмотреть эту популярную теорию. Наш мозг не состоит из эволюционных слоев: его вообще нельзя считать модульной конструкцией. Он функционирует скорее как сеть, он гораздо сложнее и интереснее, чем мы можем себе представить.

А другие наши читатели могут заявить: «Мы таковы, каковы есть, и все эти разговоры о позитивных изменениях не что иное, как очередные пустые обещания». Но вы забываете о пластичности – важнейшем качестве мозга: он податлив и постоянно меняется, адаптируясь к окружающей среде. Сегодня вы используете при совершении того или иного действия одни нервные клетки, а через пару недель, выполняя то же самое, уже иные. Например, после того как вы прочтете эту книгу, ваш мозг уже никогда не будет таким, как прежде.

Человек развивает свой мозг постоянно, когда совершает очередной выбор или учится чему-то новому в повседневной жизни. Наглядным примером пластичности мозга могут послужить знаменитые лондонские таксисты. От двух до четырех лет они готовятся и тренируются: заучивают названия улиц, маршруты и достопримечательности в радиусе десяти километров от центра города. Исследования показали, что в результате этого их правый гиппокамп увеличивается – по сравнению с представителями других профессий, – а пространственная память заметно улучшается. И чем больше таксист, колеся по городу, заучивает новых сведений, тем больше становится эта часть мозга. Подумайте: а какие участки мозга вы тренируете и развиваете в повседневной жизни? Какие из них натренированы лучше других?

Некоторые считают, что перемены вообще не для них. Они рассуждают так: «Я уже слишком стар, а старого пса новым трюкам не обучишь». Однако сегодня уже доказано, что возбужденные нейроны вырабатывают на 25 % больше нервных связей, увеличиваются в размерах и улучшают кровоснабжение мозга, причем происходит это в любом возрасте. Человек может измениться независимо от того, сколько ему лет. Это не обязательно произойдет в один миг, хотя и такое возможно. Одно новое знание, немного соответствующей настройки и доработки – и то, что недавно казалось непреодолимым, вдруг видится совершенно иначе, и вы обнаруживаете, что действуете уже совсем по-другому.

Возбужденные нейроны вырабатывают на 25 % больше нервных связей.

В жизни каждого человека найдутся примеры перемен обоих видов – как в результате целенаправленного практического обучения, так и в результате резких скачков в понимании, которые буквально в одночасье меняют наше ви дение себя, окружающего мира и доступных нам возможностей.

Из книги Сверхчувствительная натура. Как преуспеть в безумном мире автора Эйрон Элейн

Из книги Интеллект: инструкция по применению автора Шереметьев Константин

Из книги Мозг. Инструкция по применению [Как использовать свои возможности по максимуму и без перегрузок] автора Рок Дэвид

Из книги Мозг 2.0 [Саморазвитие в XXI веке] автора Шервуд Роб

1.1. Строение мозга Если посмотреть на мозг человека со стороны, то внешне он напоминает ядро грецкого ореха. Он имеет такие же два полушария, покрытые большим количеством извилистых бороздок, но, конечно, в отличие от ореха, его структура более мягкая и сложная.Мозг живого

Из книги Идеальные переговоры автора Глейзер Джудит

Из книги Думай [Почему надо сомневаться во всём] автора Гаррисон Гай

Из книги Хочу… совершить прорыв! Удивительно простой закон феноменального успеха автора Папазан Джей

Из книги Креативное решение проблем [Как развить творческое мышление] автора Лемберг Борис

Из книги Флипноз [Искусство мгновенного убеждения] автора Даттон Кевин

Из книги Заставь свой мозг работать. Как максимально повысить свою эффективность автора Брэнн Эми

Из книги Супертренажер мозга для развития сверхспособностей [Активизируй «зоны гениальности»] автора Могучий Антон

Из книги Развитие памяти по методикам спецслужб автора Букин Денис С.

Из книги Мышление наоборот автора Дониус Уильям

Пища для мозга Вашему мозгу нужна пища и в переносном, и в прямом смысле! Да, организм вообще не может без пищи, но мозг в этом смысле требует особо тщательной заботы. Ведь для мозга важно не просто получить определенное количество калорий для насыщения. Чтобы сохранять

Из книги Фокус. О внимании, рассеянности и жизненном успехе автора Гоулман Дэниел

Питание для мозга Головной мозг, составляя всего 2 % веса тела, потребляет около 20 % энергии. Для сохранения высокого тонуса нервной системы в рационе питания должны быть: белки (йогурты, орехи, яйца, рыба); сложные углеводы (грубый хлеб, необработанные крупы, макароны

Предполагается, что новые программные продукты способны «построить» мозг малыша на заказ. Какую пользу могут извлечь родители из современной науки? Что происходит с мозгом ребенка, когда мы его воспитываем?

Открытие природы и степени пластичности мозга привело к огромному прорыву в нашем понимании того, что происходит с мозгом во время учебного процесса, а также к появлению множества программных продуктов, которые, как заявляют производители, повышают пластичность мозга развивающихся детей. Многие продукты рекламируют использование обширных возможностей пластичности мозга в качестве ключевого преимущества; наряду с этим утверждение, что родители с помощью данных компьютерных программ могут сделать мозг ребенка намного «умнее», чем у других, безусловно, крайне привлекательны. Но что такое «пластичность» и что на самом деле должны делать родители, чтобы использовать этот аспект развития головного мозга своих детей?

Пластичность - это неотъемлемая способность мозга образовывать новые синапсы, связи между нервными клетками, и даже прокладывать новые нервные пути, создавая и укрепляя связи так, что в результате ускоряется обучение, а способность обращаться к информации и применять то, что было изучено, становится все более и более эффективной.

Научные исследования пластичности проследили изменение архитектоники мозга и мозговой «проводки» в тот момент, когда его подвергают воздействию непривычных, нестандартных ситуаций. В данном случае под термином «мозговая проводка» подразумеваются аксоновые взаимосвязи между областями мозга и видами активности, которые эти области осуществляют (т. е. на которых они специализируются). Так же как архитектор чертит схему электропроводки вашего дома с указанием маршрута, по которому провода пойдут на плиту, холодильник, кондиционер и так далее, исследователи чертили электрическую схему для мозга. В результате они установили, что кора головного мозга - это не фиксированная, а непрерывно модифицирующаяся вследствие обучения субстанция. Оказывается, что «провода» коры головного мозга постоянно формируют новые взаимосвязи и продолжают делать это, основываясь на входящих данных, поступающих из внешнего мира.

Давайте взглянем на то, что происходит с пластичностью мозга, когда ребенок в первый раз учится читать. Первоначально ни одна часть мозга не настроена специально на чтение. Когда ребенок учится читать, все больше и больше клеток головного мозга и нервных цепочек вовлекаются в поставленную задачу. Мозг использует пластичность, когда ребенок начинает распознавать слова и понимать то, что читает. Слово «мяч», которое ребенок уже понимает, теперь ассоциируется у него с буквами М-Я-Ч. Таким образом, обучение чтению является одной из форм нейронной пластичности.

Открытие того, что развивающийся мозг может «проложить проводку» для процесса распознавания букв, и другие удивительные открытия о пластичности нейронов часто воплощаются в коммерческих продуктах, рекламирующих пользу усиленного «мозгового фитнеса». Но факт, что научный эксперимент показывает, что определенная деятельность активирует пластичность мозга, не означает, что эта конкретная деятельность, как, например, способность различать буквы на мониторе компьютера, необходима для достижения эффекта, и не означает, что такая деятельность - это единственное средство добиться пластичности.

Занятия на распознавание букв на компьютере действительно активизируют и тренируют центры распознавания символов в зрительном участке коры головного мозга, используя пластичность мозга. Но вы добьетесь того же эффекта, если сядете и почитаете с вашим ребенком книгу . Этот интерактивный подход «родитель-ребенок» называется «диалогическое чтение» (способ чтения, позволяющий детям принять более активное участие в рассказе). Но компьютерный экран и приложения тренируют мозг распознавать только буквы, а не понимать смысл слов, состоящих из этих букв. В отличие от этого диалогическое чтение - интуитивное и интерактивное - естественным образом задействует нейронную пластичность для выстраивания аксоновых взаимосвязей между центрами распознавания букв и языковыми и мыслительными центрами головного мозга.

Исследователи продемонстрировали, что нормально развивающиеся дети учатся различать звуки речи достаточно эффективно как с помощью, так и без помощи специальных упражнений на различие звуков речи или компьютерных игр. Эти игры, развивающие умение различать звуки речи, продаются как особенный продукт, способствующий активизации пластичности нейронов, и были разработаны ведущими неврологами. На самом деле, дети, которых никогда не знакомили с такими упражнениями и играми, успешно развивают прекрасно организованный и гибкий участок коры головного мозга, отвечающий за

Уровни пластичности

В начале нынешнего столетия исследователи мозга отказались от традиционных представлений о структурной стабильности мозга взрослого человека и невозможности образования в нём новых нейронов. Стало ясно, что пластичность взрослого мозга в ограниченной степени использует и процессы нейроногенеза.

Говоря о пластичности мозга, чаще всего подразумевают его способность изменяться под влиянием обучения или повреждения. Механизмы, ответственные за пластичность, различны, и наиболее совершенное её проявление при повреждении мозга - регенерация. Мозг представляет собой чрезвычайно сложную сеть нейронов, которые контактируют друг с другом посредством специальных образований - синапсов. Поэтому мы можем выделить два уровня пластичности: макро- и микроуровень. Макроуровень связан с изменением сетевой структуры мозга, обеспечивающей сообщение между полушариями и между различными областями в пределах каждого полушария. На микроуровне происходят молекулярные изменения в самих нейронах и в синапсах. На том и другом уровне пластичность мозга может проявляться как быстро, так и медленно. В данной статье речь пойдёт в основном о пластичности на макроуровне и о перспективах исследований регенерации мозга.

Существуют три простых сценария пластичности мозга. При первом происходит повреждение самого мозга: например, инсульт моторной коры, в результате которого мышцы туловища и конечностей лишаются контроля со стороны коры и оказываются парализованными. Второй сценарий противоположен первому: мозг цел, но повреждён орган или отдел нервной системы на периферии: сенсорный орган - ухо или глаз, спинной мозг, ампутирована конечность. А поскольку при этом в соответствующие отделы мозга перестаёт поступать информация, эти отделы становятся „безработными“, они функционально не задействованы. В том и другом сценарии мозг реорганизуется, пытаясь восполнить функцию повреждённых областей с помощью неповреждённых либо вовлечь „безработные“ области в обслуживание других функций. Что касается третьего сценария, то он отличен от первых двух и связан с психическими расстройствами, вызванными различными факторами.

Немного анатомии


На рис. 1 представлена упрощённая схема расположения на наружной коре левого полушария полей, описанных и пронумерованных в порядке их изучения немецким анатомом Корбинианом Бродманом.

Каждое поле Бродмана характеризуется особым составом нейронов, их расположением (нейроны коры образуют слои) и связями между ними. К примеру, поля сенсорной коры, в которых происходит первичная переработка информации от сенсорных органов, резко отличаются по своей архитектуре от первичной моторной коры, ответственной за формирование команд для произвольных движений мышц. В первичной моторной коре преобладают нейроны, по форме напоминающие пирамиды, а сенсорная кора представлена преимущественно нейронами, форма тел которых напоминает зерна, или гранулы, почему их и называют гранулярными.

Обычно мозг подразделяют на передний и задний (рис. 1 ). Области коры, прилегающие в заднем мозге к первичным сенсорным полям, называют ассоциативными зонами. Они перерабатывают информацию, поступающую от первичных сенсорных полей. Чем сильнее удалена от них ассоциативная зона, тем больше она способна интегрировать информацию от разных областей мозга. Наивысшая интегративная способность в заднем мозге свойственна ассоциативной зоне в теменной доле (на рис. 1 не окрашена).

В переднем мозге к моторной коре прилегает премоторная, где находятся дополнительные центры регуляции движения. На лобном полюсе расположена другая обширная ассоциативная зона - префронтальная кора. У приматов это наиболее развитая часть мозга, ответственная за самые сложные психические процессы. Именно в ассоциативных зонах лобной, теменной и височной долей у взрослых обезьян выявлено включение новых гранулярных нейронов с непродолжительным временем жизни - до двух недель. Данное явление объясняют участием этих зон в процессах обучения и памяти.

В пределах каждого полушария близлежащие и отдалённые области взаимодействуют между собой, но сенсорные области в пределах полушария не сообщаются друг с другом напрямую. Между собой связаны гомотопические, то есть симметричные, области разных полушарий. Полушария связаны также с нижележащими, эволюционно более древними подкорковыми областями мозга.

Резервы мозга

Впечатляющие свидетельства пластичности мозга нам доставляет неврология, особенно в последние годы, с появлением визуальных методов исследования мозга: компьютерной, магнитно-резонансной и позитронно-эмиссионной томографии, магнитоэнцефалографии. Полученные с их помощью изображения мозга позволили убедиться, что в некоторых случаях человек способен работать и учиться, быть социально и биологически полноценным, даже утратив весьма значительную часть мозга.

Пожалуй, наиболее парадоксальный пример пластичности мозга - случай гидроцефалии у математика, приведшей к утрате почти 95% коры и не повлиявшей на его высокие интеллектуальные способности. Журнал „Science“ опубликовал по этому поводу статью с ироничным названием „Действительно ли нам нужен мозг?“


Однако чаще значительное повреждение мозга ведёт к глубокой пожизненной инвалидности - его способность восстанавливать утраченные функции не беспредельна. Распространённые причины поражения мозга у взрослых - нарушения мозгового кровообращения (в наиболее тяжёлом
проявлении - инсульт), реже - травмы и опухоли мозга, инфекции и интоксикации. У детей нередки случаи нарушения развития мозга, связанные как с генетическими факторами, так и с патологией внутриутробного развития.

Среди факторов, определяющих восстановительные способности мозга, прежде всего следует выделить возраст пациента . В отличие от взрослых, у детей после удалений одного из полушарий другое полушарие компенсирует функции удалённого, в том числе и языковые. (Хорошо известно, что у взрослых людей утрата функций одного из полушарий сопровождается нарушениями речи.) Не у всех детей компенсация происходит одинаково быстро и полно, однако треть детей в возрасте 1 года с парезом рук и ног к 7 годам избавляются от нарушений двигательной активности. До 90% детей с неврологическими нарушениями в неонатальном периоде впоследствии развиваются нормально. Следовательно, незрелый мозг лучше справляется с повреждениями.

Второй фактор - длительность воздействия повреждающего агента. Медленно растущая опухоль деформирует ближайшие к ней отделы мозга, но может достигать внушительных размеров, не нарушая функций мозга: в нём успевают включиться компенсаторные механизмы. Однако острое нарушение такого же масштаба чаще всего бывает несовместимо с жизнью.

Третий фактор - локализация повреждения мозга. Небольшое по размеру, повреждение может затронуть область плотного скопления нервных волокон, идущих к различным отделам организма, и стать причиной тяжкого недуга. К примеру, через небольшие участки мозга, именуемые внутренними капсулами (их две, по одной в каждом полушарии), от мотонейронов коры мозга проходят волокна так называемого пирамидного тракта (рис. 2 ), идущего в спинной мозг и передающего команды для всех мышц туловища и конечностей. Так вот, кровоизлияние в области внутренней капсулы может привести к параличу мышц всей половины тела.

Четвёртый фактор - обширность поражения. В целом чем больше очаг поражения, тем больше выпадений функций мозга. А поскольку основу структурной организации мозга составляет сеть из нейронов, выпадение одного участка сети может затронуть работу других, удалённых участков. Вот почему нарушения речи нередко отмечаются при поражении областей мозга, расположенных далеко от специализированных областей речи, например центра Брока (поля 44–45 на рис. 1 ).

Наконец, помимо этих четырёх факторов, важны индивидуальные вариации в анатомических и функциональных связях мозга.

Как реорганизуется кора

Мы уже говорили о том, что функциональная специализация разных областей коры мозга определяется их архитектурой. Эта сложившаяся в эволюции специализация служит одним из барьеров для проявления пластичности мозга. Например, при повреждении первичной моторной коры у взрослого человека её функции не могут взять на себя сенсорные области, расположенные с ней по соседству, но прилежащая к ней премоторная зона того же полушария - может.

У правшей при нарушении в левом полушарии центра Брока, связанного с речью, активируются не только прилежащие к нему области, но и гомотопическая центру Брока область в правом полушарии. Однако такой сдвиг функций из одного полушария в другое не проходит бесследно: перегрузка участка коры, помогающего повреждённому участку, приводит к ухудшению выполнения его собственных задач. В описанном случае передача речевых функций правому полушарию сопровождается ослаблением у пациента пространственно-зрительного внимания - например, такой человек может частично игнорировать (не воспринимать) левую часть пространства.

Примечательно, что межполушарная передача функций в одних случаях возможна, а в других - нет. По-видимому, это означает, что гомотопические зоны в обоих полушариях загружены неодинаково. Возможно, поэтому при лечении инсульта методом транскраниальной микроэлектростимуляции (подробнее о ней мы расскажем далее) чаще наблюдается и успешнее протекает улучшение речи, чем восстановление двигательной активности руки.

Компенсаторное восстановление функции, как правило, происходит не за счёт какого-либо одного механизма. Практически каждая функция мозга реализуется с участием различных его областей, как корковых, так и подкорковых. Например, в регуляции двигательной активности помимо первичной моторной коры принимают участие ещё несколько дополнительных моторных корковых центров, которые имеют собственные связи с ближними и отдалёнными областями мозга и собственные пути, идущие через ствол головного мозга в спинной мозг. При повреждении первичной моторной коры активация этих центров улучшает двигательные функции.

Кроме того, организация самого пирамидного тракта - наиболее длинного проводящего пути, который состоит из многих миллионов аксонов („отводящих“ отростков) мотонейронов коры и следует к нейронам передних рогов спинного мозга (рис. 2 ), - предоставляет и другую возможность. В продолговатом мозге пирамидный тракт расщепляется на два пучка: толстый и тонкий. Толстые пучки перекрещиваются друг с другом, и в результате толстый пучок правого полушария в спинном мозге следует слева, а толстый пучок левого полушария - соответственно справа. Мотонейроны коры левого полушария иннервируют мышцы правой половины тела, и наоборот. Тонкие же пучки не перекрещиваются, ведут от правого полушария к правой стороне, от левого - к левой.

У взрослого человека активность мотонейронов коры, аксоны которых проходят по тонким пучкам, практически не выявляется. Однако при поражении, например, правого полушария, когда нарушается двигательная активность мышц шеи и туловища левой стороны, в левом полушарии активируются именно эти мотонейроны, с аксонами в тонком пучке. В результате активность мышц частично восстанавливается. Можно предположить, что этот механизм также задействован при лечении инсультов в острой стадии транскраниальной микроэлектростимуляцией.

Замечательное проявление пластичности мозга - реорганизация повреждённой коры даже по прошествии многих лет с момента возникновения повреждения. Американский исследователь Эдвард Тауб (ныне работающий в университете Алабамы) и его коллеги из Германии Вольфганг Митнер и Томас Элберт предложили простую схему реабилитации двигательной активности у пациентов, перенёсших инсульт. Давность перенесённого поражения мозга среди их пациентов варьировала от полугода до 17 лет. Суть двухнедельной терапии заключалась в разработке движений парализованной руки с помощью различных упражнений, причём здоровая рука была неподвижной (фиксировалась). Особенность этой терапии - интенсивность нагрузки: пациенты упражнялись по шесть часов ежедневно! Когда же мозг пациентов, у которых восстановилась двигательная активность руки, обследовали с помощью функциональной магнитно-резонансной томографии, то оказалось, что в выполнение движений этой рукой вовлекаются множество областей обоих полушарий. (В норме - при непоражённом мозге, - если человек двигает правой рукой, у него активируется преимущественно левое полушарие, а правое полушарие ответственно за движение левой руки.)

Восстановление активности парализованной руки через 17 лет после инсульта - бесспорно, волнующее достижение и яркий пример реорганизации коры. Однако реализовано это достижение высокой ценой - соучастием большого числа областей коры и притом обоих полушарий.

Принцип работы мозга таков, что в каждый момент та или иная область коры может участвовать только в одной функции. Вовлечение сразу многих областей коры в управление движениями руки ограничивает возможность параллельного (одновременного) выполнения мозгом разных задач. Представим себе ребёнка на двухколёсном велосипеде: он восседает на седле, крутит ногами педали, прослеживает свой маршрут, правой рукой фиксирует руль и её указательным пальцем нажимает на звонок, а левой рукой держит печенье, откусывая его. Выполнение такой простой программы быстрого переключения с одного действия на другое непосильно не только для поражённого, но и для реорганизованного мозга. Не умаляя важности предложенного метода реабилитации инсультных больных, хотелось бы заметить, что она не может быть совершенной. Идеальным вариантом представляется восстановление функции не за счёт реорганизации поражённого мозга, а за счёт его регенерации.

Отступление от правил

Обратимся теперь ко второму сценарию: мозг цел, но повреждены периферические органы, а конкретнее - слух или зрение. Именно в такой ситуации оказываются люди, рождённые слепыми или глухими. Давно замечено, что слепые быстрее дискриминируют слуховую информацию и воспринимают речь, чем зрячие. Когда слепых от рождения (и утративших зрение в раннем детстве) исследовали методом позитронно-эмисионной томографии мозга в то время, как они читали тексты, набранные брайлевским шрифтом, оказалось, что при чтении пальцами у них активируется не только соматосенсорная кора, ответственная за тактильную чувствительность, но и зрительная кора. Почему это происходит? Ведь в зрительную кору у слепых не поступает информация от зрительных рецепторов! Аналогичные результаты были получены при изучении мозга глухих: они воспринимали используемый ими для общения знаковый язык (жестикуляцию) в том числе и слуховой корой.

Рис. 3. Операция подсадки зрительного тракта к медиальному коленчатому телу таламуса. Слева показан нормальный ход нервных путей от глаз и ушей, справа - их расположение после операции. (Нервные пути, несущие слуховую информацию, отсекали от медиальных коленчатых тел и на их места подсаживали окончания зрительных нервов, отделённые от латеральных коленчатых тел таламуса. Было уничтожено также нижнее двухолмие в среднем мозге, где переключается часть нервных путей от уха в слуховую кору (не показано на схеме):
1 - зрительный тракт,
2 - слуховой тракт,
3 - латеральные коленчатые тела таламуса,
4 - медиальные коленчатые тела таламуса,
5 - таламокортикальные пути к зрительной коре,
6 - таламокортикальные пути к слуховой коре.


Как уже отмечалось, сенсорные зоны не связаны в коре напрямую друг с другом, а взаимодействуют лишь с ассоциативными областями. Можно предположить, что переадресация соматосенсорной информации у слепых в зрительную кору и зрительной информации у глухих - в слуховую происходит с участием подкорковых структур. Такая переадресация представляется экономичной. При передаче информации от сенсорного органа в сенсорную область коры сигнал несколько раз переключается с одного нейрона на другой в подкорковых образованиях мозга. Одно из таких переключений происходит в таламусе (зрительном бугре) промежуточного мозга. Пункты же переключения нервных путей от разных сенсорных органов близко соседствуют (рис. 3 , слева).

При повреждении какого-либо сенсорного органа (или идущего от него нервного пути) его пункт переключения оккупируют нервные пути другого сенсорного органа. Поэтому сенсорные области коры, оказавшиеся отрезанными от обычных источников информации, вовлекаются в работу за счёт переадресации им иной информации. Но что происходит тогда с самими нейронами сенсорной коры, обрабатывающими чужую для них информацию?

Исследователи из Массачусетсского технологического института в США Джитендра Шарма, Алессандра Ангелуччи и Мриганка Сур брали хорьков в возрасте одного дня и делали зверькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору (рис. 3). Целью эксперимента было выяснить, преобразуется ли слуховая кора структурно и функционально при передаче ей зрительной информации. (Напомним ещё раз, что для каждого типа коры характерна особая архитектура нейронов.) И в самом деле, это произошло: слуховая кора морфологически и функционально стала похожа на зрительную!

Иначе поступили исследователи Дайана Канн и Ли Крубитцер из Калифорнийского университета. Опоссумам на четвёртый день после рождения удалили оба глаза и через 8–12 месяцев у повзрослевших животных изучали первичные сенсорные области коры и прилегающую к ним ассоциативную зону. Как и ожидалось, у всех ослеплённых животных реорганизовалась зрительная кора: она сильно уменьшилась в размере. Зато, к удивлению исследователей, непосредственно к зрительной коре прилегала структурно новая область X. Как зрительная кора, так и область X содержали нейроны, воспринимавшие слуховую, соматосенсорную или и ту и другую информацию. В зрительной коре оставалось ничтожное число участков, не воспринимавших ни ту, ни другую сенсорную модальность - то есть сохранивших, вероятно, своё первоначальное назначение: восприятие зрительной информации.

Неожиданным оказалось то, что реорганизация коры затронула не только зрительную кору, но и соматосенсорную, и слуховую. У одного из животных соматосенсорная кора содержала нейроны, реагировавшие или на слуховую, или на соматосенсорную, или на обе модальности, а нейроны слуховой коры реагировали либо на слуховые сигналы, либо на слуховые и соматосенсорные. При нормальном развитии мозга такое смешение сенсорных модальностей отмечается только в ассоциативных областях более высокого порядка, но не в первичных сенсорных областях.

Развитие мозга определяется двумя факторами: внутренним - генетической программой и внешним - информацией, поступающей извне. Вплоть до последнего времени оценка влияния внешнего фактора была трудноразрешимой экспериментальной задачей. Исследования, о которых мы только что рассказали, позволили установить, насколько важен характер поступающей в мозг информации для структурно-функционального становления коры. Они углубили наши представления о пластичности мозга.

Почему мозг регенерирует плохо

Цель регенерационной биологии и медицины - при повреждении органа блокировать заживление рубцеванием и выявить возможности перепрограммирования повреждённого органа на восстановление структуры и функции. Эта задача предполагает восстановление в повреждённом органе состояния, характерного для эмбриогенеза, и присутствие в нём так называемых стволовых клеток, способных размножаться и дифференцироваться в различные типы клеток.

В тканях взрослого организма клетки часто обладают весьма ограниченной способностью к делению и жёстко придерживаются „специализации“: клетки эпителия не могут превращаться в клетки мышечного волокна и наоборот. Однако накопившиеся к настоящему времени данные позволяют с уверенностью утверждать, что практически во всех органах млекопитающих клетки обновляются. Но скорость обновления различна. Регенерация клеток крови и эпителия кишечника, рост волос и ногтей идут в постоянном темпе на протяжении всей жизни человека. Замечательной регенерационной способностью обладают печень, кожа или кости, причём регенерация требует участия большого числа регуляторных молекул различного происхождения. Иначе говоря, гомеостаз (равновесие) этих органов находится под системным надзором, так что их способность к регенерации пробуждается каждый раз, когда какое-либо повреждение нарушает равновесие.

Обновляются, хоть и медленно, мышечные клетки сердца: нетрудно подсчитать, что за время человеческой жизни клеточный состав сердца хотя бы раз обновляется полностью. Более того, обнаружена линия мышей, у которых практически полностью регенерирует сердце, поражённое инфарктом. Каковы же перспективы регенерационной терапии мозга?

Нейроны обновляются и в мозгу взрослого человека. В обонятельных луковицах мозга и зубчатой извилине гиппокампа, расположенного на внутренней поверхности височной доли мозга, идёт непрерывное обновление нейронов. Из мозга взрослого человека выделены стволовые клетки, и в лабораторных условиях показано, что они могут дифференцироваться в клетки других органов. Как уже упоминалось, в ассоциативных областях лобной, височной и теменной долей у взрослых обезьян образуются новые гранулярные нейроны с небольшим (около двух недель) временем жизни. У приматов также выявлен нейроногенез в обширной области, охватывающей внутреннюю и нижнюю поверхности височной доли мозга. Но эти процессы имеют ограниченный характер - иначе они вошли бы в противоречие с эволюционно сформировавшимися механизмами мозга.

Трудно представить, как человек и его младшие братья существовали бы в природе при быстром клеточном обновлении мозга. Невозможно было бы сохранять в памяти накопленный опыт, информацию об окружающем мире, необходимые навыки. Более того, оказались бы невозможными механизмы, отвечающие за комбинаторное манипулирование мысленными представлениями об объектах и процессах прошлого, настоящего или будущего - всё то, что лежит в основе сознания, мышления, памяти, языка и др.

Исследователи сходятся в том, что ограниченность регенерации взрослого мозга нельзя объяснить каким-либо одним фактором и потому нельзя снять каким-то единичным воздействием. Сегодня известно несколько десятков разных молекул, блокирующих (или индуцирующих) регенерацию длинных отростков нейронов - аксонов. Хотя уже достигнуты некоторые успехи в стимуляции роста повреждённых аксонов, до решения проблемы регенерации самих нейронов ещё далеко. Однако в наши дни, когда сложность мозга перестала отпугивать исследователей, эта проблема всё больше привлекает внимание. Но мы не должны забывать про то, о чём говорилось в предыдущем абзаце. Восстановление повреждённого мозга не будет означать полного восстановления прежней личности: гибель нейронов - это невосполнимая утрата прошлого опыта и памяти.

Что такое МЭС

Сложность механизмов регенерации мозга дала толчок поискам таких системных воздействий, которые вызывали бы движение молекул в самих нейронах и в их окружении, переводя мозг в новое состояние. Синергетика - наука о коллективных взаимодействиях - утверждает, что новое состояние в системе можно создать перемешиванием её элементов. Поскольку большинство молекул в живых организмах несёт заряд, подобное возмущение в мозгу можно было бы вызвать с помощью внешних слабых импульсных токов, приближающихся по своим характеристикам к биотокам самого мозга. Эту идею мы и попытались осуществить на практике.

Решающим фактором для нас стала медленноволновая (0,5–6 герц) биоактивность мозга маленьких детей. Поскольку на каждой стадии развития характеристики мозга самосогласованны, мы выдвинули допущение, что именно эта активность поддерживает способность детского мозга к восстановлению функций. Не сможет ли медленноволновая микро-электростимуляция слабыми токами (МЭС) индуцировать подобные механизмы у взрослого человека?

Разница в электрическом сопротивлении клеточных элементов и межклеточной жидкости нервной ткани громадна - у клеток оно в 10 3–10 4 раз выше. Поэтому при МЭС молекулярные сдвиги скорее произойдут в межклеточной жидкости и на поверхности клеток. Сценарий изменений может быть следующим: наиболее сильно начнут колебаться малые молекулы в межклеточной жидкости, низкомолекулярные регуляторные факторы, слабо связанные с клеточными рецепторами, оторвутся от них, изменятся потоки ионов из клеток и в клетку и т. д. Следовательно, МЭС может вызвать немедленную пертурбацию межклеточной среды в очаге поражения, изменить патологический гомеостаз и индуцировать переход к новым функциональным отношениям в ткани мозга. В результате клиническая картина заболевания быстро улучшится, уменьшится нейродефицит. Заметим, что процедура МЭС безвредна, безболезненна и непродолжительна: пациенту просто накладывают на определённые области головы пару электродов, подсоединённых к источнику тока.

Чтобы проверить, насколько справедливы наши предположения, мы в сотрудничестве со специалистами из нескольких клиник и больниц Санкт-Петербурга отобрали пациентов со следующими поражениями центральной нервной системы: острая стадия инсульта, невралгия тройничного нерва, опийный абстинентный синдром и детский церебральный паралич. Эти заболевания различаются по своему происхождению и механизмам развития, однако в каждом случае МЭС вызывала быстрые либо немедленные терапевтические эффекты (быстрый и немедленный - не одно и то же: немедленный эффект наступает сразу после после воздействия или же в очень скором времени).

Столь впечатляющие результаты дают основание полагать, что МЭС изменяет функционирование сетевой структуры мозга за счёт разных механизмов. Что касается быстрых и нарастающих от процедуры к процедуре эффектов МЭС у пациентов в острой стадии инсульта, то они, помимо механизмов, рассмотренных выше, могут быть связаны с восстановлением нейронов, подавленных интоксикацией, с предотвращением апоптоза - запрограммированной гибели нейронов в зоне поражения, а также с активированием регенерации. Последнее предположение подкрепляется тем, что МЭС ускоряет восстановление функции руки после того, как в ней хирургическим путём воссоединяют концы повреждённых периферических нервов, а также тем, что у пациентов в нашем исследовании наблюдались и отсроченные терапевтические эффекты.

При опийном абстинентном синдроме реализуется третий из рассматриваемых нами сценариев пластичности мозга. Это психическое расстройство, связанное с многократным приёмом наркотика. На начальных этапах нарушения ещё не сопряжены с заметными структурными изменениями мозга, как при детском церебральном параличе, но в значительной степени обусловлены процессами, происходящими на микроуровне. Быстрота и множественность эффектов МЭС при этом синдроме и при других психических расстройствах подтверждает наше предположение о том, что МЭС воздействует сразу на множество разных молекул.

Лечение с помощью МЭС получали в общей сложности более 300 пациентов, причём главным критерием для оценки действия МЭС служили терапевтические эффекты. В будущем нам представляется необходимым не столько выяснение механизма действия МЭС, сколько достижение максимальной пластичности мозга при каждом заболевании. Так или иначе, свести объяснение действия МЭС к каким-то отдельным молекулам либо клеточным сигнальным системам было бы, по-видимому, некорректно.

Важное достоинство микроэлектростимуляции слабыми токами - в том, что она, в отличие от популярных ныне методов заместительной клеточной и генной терапии, запускает эндогенные, собственные механизмы пластичности мозга. Главная проблема заместительной терапии даже не в том, чтобы накопить необходимую массу клеток для трансплантации и ввести их в поражённый орган, а в том, чтобы орган принял эти клетки, чтобы они смогли в нём жить и работать. До 97% клеток, трансплантированных в мозг, погибает! Поэтому дальнейшее изучение МЭС в индуцировании процессов регенерации мозга представляется перспективным.

Заключение

Мы рассмотрели лишь некоторые примеры пластичности мозга, связанные с восстановлением повреждений. Другие её проявления имеют отношение к развитию мозга, точнее, к механизмам, ответственным за память, обучение и другие процессы. Возможно, здесь нас ждут новые захватывающие открытия. (Вероятный предвестник их - неонейроногенез в ассоциативных зонах лобной, теменной и височной долей взрослых обезьян.)

Однако у пластичности мозга есть и отрицательные проявления. Её минус-эффекты определяют многие болезни мозга (например, болезни роста и старения, психические расстройства). Обзоры многочисленных данных по визуальным исследованиям мозга сходятся в том, что при шизофрении часто уменьшается кора фронтальной области. Но нередки также изменения коры и в других областях мозга. Следовательно, уменьшается число нейронов и контактов между нейронами поражённой области, а также число её связей с другими отделами мозга. Изменяется ли при этом характер переработки поступающей в них информации и содержание информации „на выходе“? Нарушения восприятия, мышления, поведения и языка у больных шизофренией позволяют утвердительно ответить на этот вопрос.

Мы видим, что механизмы, отвечающие за пластичность мозга, играют важнейшую роль в его функционировании: в компенсации повреждений и в развитии болезней, в процессах обучения и формирования памяти и др. Не будет большим преувеличением отнести пластичность к фундаментальным особенностям мозга.

Доктор биологических наук Е. П. Харченко ,
М. Н. Клименко

Химия и жизнь, 2004, N6

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-143470-6", renderTo: "yandex_rtb_R-A-143470-6", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Как часто мы слышим, что мысли формируют наше будущее. «Секрет», «Трансерфинг реальности», Луиза Хей, Сытин и многие-многие другие утверждают это: «Мы сегодняшние — это наши мысли вчера. Мысли сегодня формируют наше завтра». Есть и скептики. Если вы скажете, что и визуализации помогают, обязательно найдутся и те, кто будут утверждать, что им не помогло и вообще все это чушь, «сколько не говори слово халва, слаще во рту не станет».

В Ханчжоу, Китай

И сегодня, в книжном отделе мне попалась книга, заинтриговавшая меня: Норман Дойдж «Пластичность мозга «. Едва пролистав несколько страниц, я поняла, что это то, что давно искала — не просто утверждения типа «думай позитивно и все получишь», а именно научные факты, доказывающие, что мысли перестраивают структуру нашего мозга и, тем самым, изменяют и наше тело.

… Господствующая классическая медицина и наука считали, что законы функционирования мозга неизменны. Существовало общепринятое мнение, будто после окончания детского возраста мозг начинает затем меняться только в сторону ухудшения его работы: якобы клетки мозга теряют способность правильно развиваться, получают повреждения или умирают, их восстановление невозможно…

… Еще в конце 1960-х начале 1970-х годов было сделано несколько важных открытий. Исследования показали, что мозг изменяется с каждым совершаемым нами действием, преобразуя свои схемы так, чтобы они лучше соответствовали решаемой задаче (выделено мной — М.А.). Если одни мозговые структуры дают сбой, в действие вступают другие. Представление о мозге как механизме, состоящем из жестко специализированных частей, не могло в полной мере объяснить те потрясающие изменения, которые наблюдали ученые. Они назвали это важнейшее свойство мозга нейропластичностью .

… Сначала многие исследователи не решались использовать слово «нейропластичность» в своих работах, а коллеги порицали их за внедрение придуманного ими понятия. Тем не менее ученые продолжали настаивать на своем, постепенно опровергая теорию неменяющегося мозга. Они доказывали, что задатки, присущие нам от рождения, не всегда остаются неизменными; что поврежденный мозг может осуществить собственную реорганизацию (в случае нарушения функционирования одного из его участков другой способен его заменить); что иногда происходит возмещение умерших клеток мозга (!); что многие «схемы» работы мозга и даже основные рефлексы, считавшиеся постоянными, таковыми не являются. Один из исследователей даже обнаружил, что мышление, обучение и активные действия способны «включать» или «выключать» те или иные наши гены

Во время своих поездок я встретился с ученым, благодаря которому слепые от рождения люди начинали видеть, и ученым, который давал глухим способность слышать. Я разговаривал с людьми, перенесшими инсульт несколько десятилетий назад и считавшимися неизлечимыми, им помогло выздороветь лечение, ориентированное на нейропластические свойства мозга. Были и такие, чьи проблемы с обучением были преодолены, и коэффициент их интеллекта (IQ) существенно вырос. Я познакомился с данными, подтверждающими возможность укрепления памяти у восьмидесятилетних людей: память восстанавливалась до уровня, характерного для них в возрасте пятидесяти пяти лет. Я видел людей, которые благодаря своим мыслям «перепрограммировали» собственный мозг, избавившись от патологических состояний и последствий травм, ранее считавшихся неизлечимыми…

На мой взгляд, идея о том, что мозг способен менять собственную структуру и функционирование, благодаря мыслям и действиям человека , — самое важное нововведение в наших представлениях о человеческом мозге…

… наличие у него (т.е. мозга — М.А.) такого свойства, как нейропластичность, имеет не только положительные стороны; оно не только наделяет наш мозг большими возможностями, но и делает его более уязвимым к внешним влияниям. Нейропластичность способна формировать как более гибкое, так и ригидное поведение…Как это ни странно, но некоторые из наших самых устойчивых привычек и расстройств являются продуктом как раз нашей пластичности. Однажды произошедшее в мозговых структурах пластическое изменение в результате своего закрепления может помешать другим изменениям.

Действительно, сколько мы знаем случаев, когда люди излечивались от самых тяжелейших болезней и вели полноценную жизнь. Всем знаком эффект плацебо. Известно также и то, что для сознания нет разницы, происходит ли что-то с ним в реальности или визуализируется. Накоплено огромное количество фактов, подтверждающих все это. Да и каждый из нас, пожалуй, может привести примеры из собственной жизни, когда мечты воплощались в реальность, отступали тяжелейшие болезни. Этот процесс долгий, требующий внутренней самоорганизации и дисциплины. Но оно того стоит.

В общем, очень рекомендую эту книгу почитать. Я, в свою очередь, думаю, что еще напишу о ней — все-таки это те вещи, которые переворачивают наше представление о реальности и дают в руки очень мощный инструмент для улучшения качества и содержания жизни.

Мне кажется, что и , и , о которых я уже писала, получают новое объяснение в свете теории нейропластичности. Отбрасывая ненужные страхи, пустые переживания, мы тем самым меняем и структуру нашего мозга, восстанавливаем его правильную работу, направленную на созидание, а не на разрушение тела.

© , 2009-2019. Копирование и перепечатка любых материалов и фотографий с сайта сайт в электронных публикациях и печатных изданиях запрещены.