Онкогены и гены-супрессоры опухоли. Гены супрессоры опухолевого роста. Механизмы предотвращения онкогенеза Обобщенный патогенез опухолевого роста

Для возникновения опухолей у человека одной активации онкогенов недостаточно, поскольку бесконтрольному клеточному делению препятствуют гены-супрессоры (гены Rb, p-53, АРС), обеспечивающие остановку митоза клетки в контрольно-пропускных пунктах (checkpoints). В первом контрольно-пропускном пункте происходит репарация повреждений ДНК, поскольку механизм контроля G1/S блокирует репликацию ДНК. При нарушениях процессов репарации индуцируется апоптоз. Во втором контрольно-пропускном пункте механизм контроля G2/M запрещает митоз до завершения репликации.

Благодаря этому обеспечивается стабильность генома. В случае мутаций гены-супрессоры приобретают рецессивный признак по обеим аллелям, активность их белков резко снижается, клетка с генетическими поломками реализует свойство бесконтрольного размножения и создает клон себе подобных потомков. Объяснение образования рецессивных генов-супрессоров дано Кнудсоном, который предложил гипотезу канцерогенеза, известную как теория «двух ударов». Сущность ее такова – одна аллель рецессивного гена-супрессора наследуется от родителей («первый удар»), а вторая - результат мутации («второй удар»). Гипотеза Кнудсона имеет подтверждение при проведении цитогенетического или молекулярного исследования некоторых опухолей.

7. Роль в канцерогенезе генов, регулирующих репарацию днк и апоптоз.

В процессе канцерогенеза мутации генов, отвечающих за репарацию ДНК и апоптоз, приводящие к снижению активности соответствующих ферментов, способствуют нарастанию нестабильности генома опухолевой клетки. Кроме того, наряду с бесконтрольной пролиферацией, в связи с низкой активностью или исчезновением генов,

регулирующих апоптоз (bcl-2, bac), происходит резкое увеличение числа опухолевых клеток.

8. Взаимоотношение опухоли и организма. Паранеопластический синдром. Механизмы противоопухолевой резистентности организма.

Взаимоотношения опухоли и организма весьма многообразны и противоречивы. С одной стороны, организм, являющийся для опухоли внешней средой, создает ей необходимые условия существования и роста (обеспечивая, например, ее кровоснабжение), а с другой - с большим или меньшим успехом противодействует ее развитию.

Развитие опухоли - интерактивный процесс (акты «агрессии» опухоли чередуются с ответными «контрмерами» организма). Исход этой борьбы предопределен громадным потенциалом «агрессивности» опухоли, с одной стороны, и ограниченностью защитных ресурсов организма - с другой.

Иммунная защита. Далеко не всякий возникший в организме клон опухолевых клеток превращается в злокачественную опухоль. Организм располагает определенными, хотя и ограниченными, средствами противодействия. На первых этапах действует система так называемой естественной неспецифической резистентности, способная элиминировать небольшое количество (от 1 до 1000) опухолевых клеток. К ней относятся естественные киллеры - крупные гранулярные лимфоциты, составляющие от 1 до 2,5 % от всей популяции периферических лимфоцитов, и макрофаги. Специфический противоопухолевый иммунитет обычно развивается слишком поздно и не очень активен. Спонтанные опухоли животных и человека слабоантигенны и легко преодолевают этот барьер. Однако в некоторых случаях он, по-видимому, способен играть существенную роль.

Паранеопластический синдром - проявление генерализованного воздействия опухоли на организм. Его формы разнообразны - состояние иммунодепрессии (повышенная подверженность инфекционным заболеваниям), тенденция к повышению свертываемости крови, сердечнососудистая недостаточность, мышечная дистрофия, некоторые редкие дерматозы, пониженная толерантность к глюкозе, острая гипогликемия при опухолях больших размеров и другие. Одним из проявлений паранеопластического синдрома является так называемая

раковая кахексия (общее истощение организма), которая возникает в периоде, близком к терминальному, и часто наблюдается при раке желудка, поджелудочной железы и печени

Она характеризуется потерей массы тела, в основном из-за усиленного распада белков скелетных мышц (частично миокарда, а также истощения жировых депо, сопровождается отвращением к пище (анорексией) и изменением вкусовых ощущений. Одна из причин кахексии - повышенный (иногда на 20-50 %) расход энергии, обусловленный по- видимому, гормональным дисбалансом.

Механизмы противоопухолевой резистентности могут быть условно разделены по этапу и фактору канцерогенеза на три основных обобщенных вида:

1. Антиканцерогенные, адресованные этапу взаимодействия канцерогенного (причинного) фактора с клетками, органеллами, макромолекулами.

2. Антитрансформационные, адресованные этапу трансформации нормальной клетки в опухолевую и тормозящие его.

3. Антицеллюлярные, адресованные этапу превращения образования отдельных опухолевых клеток в клеточную колонию - опухоль.

Антиканцерогенные механизмы представлены тремя группами. К 1-ой группе относятся атиканцерогенные механизмы, действующие против химических канцерогенных факторов:

1. Реакции инактивации канцерогенов: а) окисление с помощью неспецифических оксидаз микросом, например полициклических углеводородов; б) восстановление с помощью редуктаз микросом, например аминоазокрасителей - диметиламиноазобензола, о-аминоазотолуола; в) диметилирование - ферментативное или неферментативное; г) коньюгация с глюкуроновой или серной кислотой с помощью ферментов (глюкуронидазы сульфатазы);

2. Элиминация эзо- и эндогенных канцерогенных агентов из организма в составе желчи, кала, мочи;

3. Пиноцитоз и фагоцитоз канцерогенных агентов, сопровождающиеся их обезвреживанием;

4. Образование антител против кацерогенов как гаптенов;

5. Ингибирование свободных радикалов антиоксидантами.

Ко 2-ой группе относятся антиканцерогенные механизмы, действующие против биологических этиологических факторов - онкогенных вирусов:

1. Ингибирование онкогенных вирусов интерферонами;

2. Нейтрализация онкогенных вирусов специфическими антителами. Третья группа антиканцерогенных механизмов представлена механизмами, действующими против физических канцерогенных факторов - ионизирующих излучений. Основными среди них являются реакции торможения образования и инактивации свободных радикалов (антирадикальные реакции) и перекисей - липидных и водорода (антиперекисные реакции), являющиеся, по-видимому, «медиаторами», через которые ионизирующие излучения, по крайней мере, отчасти, реализуют свое опухолеродное влияние. Антирадикальные и антиперекисные реакции обеспечиваются витамином Е, се- леном, глутатион-дисульфидной системой (состоящей из восстановленного и окисленного глютатиона), глутатионпероксидазой (расщепляющей перекиси липидов и водорода), супероксиддисмутазой, которая инактивирует супероксидный анион-радикал, каталазой, расщепляющей перекись водорода.

Антитрансформационные механизмы

За счет этих механизмов происходит ингибирование трансформации нормальной клетки в опухолевую.

К ним относятся:

1. Антимутационные механизмы, являющиеся функцией клеточных ферментных систем репарации ДНК, устраняющие повреждения, «ошибки» ДНК (генов) и поддерживающие благодаря этому генный гомеостаз;2. Антионкогенные механизмы, являющиеся функцией специальных клеточных генов - антагонистов онкогенов и поэтому названные антионкогенами. Действие их сводится к подавлению размножения клеток и стимуляции их дифференцировки. О наличии антионкогенов в нормальных клетках свидетельсвуют опыты группы Э. Стан- бридж и сотрудников. Они ввели в нормальную хромосому (11-я пара из клетки человека) в клетку опухоли Вильямса. В результате опухолевые клетки подверглись трансформации в нормальные клетки. В качестве косвенного аргумента в пользу антионкогенов называют отсутствие такого гена (так называемого Rb-гена) в 13-ой паре хромосом в клетках ретинобластомы и в их нормальных предшественниках - клетках сетчатки.

Антицеллюлярные механизмы

Эти механизмы включаются с момента образования первых бластомных клеток. Они направлены на ингибирование и уничтожение отдельных опухолевых клеток и опухолей в целом. Факторами, включающими антицеллюлярные противоопухолевые механизмы, являются антигенная и «клеточная» чужеродность опухолей. Выделяют две группы антицеллюлярных механизмов: иммуногенные и неиммуногенные

1. Иммуногенные антицеллюлярные механизмы являются функциями иммунной системы, осуществляющей так называемый иммунный надзор за постоянством антигенного состава тканей и органов организма. Они делятся на специфические и неспецифические.

К специфическим иммуногенным механизмам относятся цитотоксическое действие, ингибирование роста и уничтожение опухолевых клеток: а) иммунными Т-лимфоцитами- киллерами; б) иммуными макрофагами с помощью секрктируемых ими факторами: макрофаг-лизина, лизосомальных ферментов, факторов комплемента, ростингибирующего компонента интерферона, фактора некроза опухолей; в) К-лимфоцитами, обладающими Fc-рецепторами к иммуноглобулинам и благодаря этому проявляющими сродство и цитотоксичность к опухолевым клеткам, которые покрыты IgG. Неспецифические иммуногенные механизмы. К ним относятся неспецифическое цитотоксическое действие, ингибирование и лизис опухолевых клеток: а) натуральными киллерами (НК- клетками), являющимися, как и К-лимфоциты, разновидностью лимфоцитов, лишенных характерных маркеров Т- и В-лимоцитов; б) неспецифически активированными (например под влиянием митогенов, ФГА и др.); в) неспецифически активированными макрофагами (например, под влиянием БЦЖ или бактерий, эндотоксинами, особенно липополисахаридами из гамотрицательных микроорганизмов) с помощью секретируемых ими фактора некроза опухолей (ФНО), интерлейкина-1, интерферона и др.; д) «перекрестными» антителами.

2. Неиммуногенные антицеллюлярные факторы и механизмы.

К ним относят: 1) фактор некроза опухолей, 2) аллогенное торможение, 3) интерлейкин-1, 4) кейлонное ингибирование, 5) канцеролиз, индуцированный липопротеидами, 6) контактное торможение, 7) лаброцитоз, 8) регулирующее влияние гормонов.

Фактор некроза опухолей. Продуцируется моноцитами, тканевыми макрофагами, Т- и В-лимфоцитами, гранулоцитами, тучными клетками. Вызывает деструкцию и гибель опухолевых клеток. Интерлекин -1 (ИЛ-1). Механизм антибластомного действия ИЛ-1 связан со стимуляцией К-лимфоцитов, Т-лимфоцитов-киллеров, синтезом ИЛ-2, который в свою очередь стимулирует размножение и рост Т-лимфоцитов (включая Т-киллеры), активацией макрофагов, образованием у-интерферона и, возможно, отчасти посредством пирогенного действия. Аллогенное торможение. Применительно к опухолевым клеткам это подавление жизнедеятельности и уничтожение их окружающими нормальными клетками. Предполагают, что аллогенное торможение обусловлено цитотоксическим действием антигенов гистонесовместимых метаболитов и различием поверхности мембран.Кейлонное ингибирование. Кейлоны - это тканеспецифические ингибиторы размножения клеток, в том числе и опухолевых. Канцеролиз, индуцированный липопротеидами. Канцеролиз - это растворение опухолевых клеток. Фракция щ -липопротеидов оказывает специфическое онколитическое действие. На ауто-, гомо- и гетерологические нормальные клетки эта фракция не оказывает литического влияния.

Контактное торможение. Полагают, что в реализации феномена контактного торможения принимают участие циклические нуклеотиды - циклический аденозин-3, 5- монофосфат (цАМФ) и циклический гуанозин-3,5-монофосфат (цГМФ).

Увеличение концентрации цАМФ активирует контактное торможение. Напротив,

цГМФ тормозит контактное торможение и стимулирует деление клеток. Лаброцитоз. Кацерогенез сопровождается увеличением числа лабро-цитов (тучных клеток), продуцирующих гепарин, который ингибирует образование фибрина на поверхности клеток опухоли (фиксированных и циркулирующих в крови). Это препятствует развитию метастазов, благодаря торможению превращения ракового клеточного эмбола в клеточный - тромбо-эмбол. Регулирующее влияние гормонов. Гормоны оказывают регулирующее влияние на антибластомную резистентность организма. Характерной особенностью этого влияния является его многообразие, зависящее от дозы гормона и вида опухоли. Возникает вопрос: почему, несмотря на столь мощные антицеллюлярные механизмы, направленные против опухолевой клетки, последняя нередко сохраняется и превращается в бластому? Происходит это потому, что причины, вызывающие опухоли, одновременно (задолго до развития опухоли) обусловливают иммунодепрессию. Возникшая опухоль, в свою очередь, сама потенцирует иммунодепрессию. Следует отметить, что иммунодепрессия, возникшая вне связи с действием канцерогенов, например наследственная Т-иммунная недостаточность (при синдроме Вискотта-Олдрича и др.), а также приобретенная (используемая при пересадке органов или развивающаяся при пересадке органов или развивающаяся при лечении цитостатиками) резко увеличивает риск возникновения опухоли. Так, иммунодепрессия при пересадке органов увеличивает риск развития опухоли в 50-100 раз. Препятствует уничтожению и, напротив, способствует сохранению опухолевых клеток и ряд других феноменов: антигенное упрощение; реверсия антигенов - появление эмбриональных белков-антигенов, к которым в организме имеется врожденная толерантность; появление особых антител, защищающих опухолевые клетки от Т-лимфоцитов и названных «блокирующими» антителами.

Супрессор)

1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Смотреть что такое "Ген-супрессор" в других словарях:

    Сущ., кол во синонимов: 2 ген (14) супрессор (3) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    ген-супрессор - Ген, в случае мутации которого, подавляется экспрессия другого гена Тематики биотехнологии EN suppressor gene …

    Ген супрессор, гена супрессора … Орфографический словарь-справочник

    Suppressor gene ген супрессор. Ген, обусловливающий восстановление нормального фенотипа (дикого типа), измененного в результате мутации в др. гене; Г. с. можно рассматривать как форму гена ингибитора . (Источник: «Англо… … Молекулярная биология и генетика. Толковый словарь.

    - (син. супрессор) ген, подавляющий проявление неаллельного мутантного гена, в результате чего фенотип особи не изменяется … Большой медицинский словарь

    Ген-супрессор - мутация в локусе хромосом, подавляющая фенотипическое проявление другой мутации в том же самом гене (внутригенный супрессор), или в другом гене (межгенный супрессор) … Физическая Антропология. Иллюстрированный толковый словарь.

    - (антионкоген) ген, способный предотвращать размножение клеток. Если мутация происходит в этом гене, то человек может стать более восприимчивым к развитию злокачественной опухоли той ткани, в которой произошла эта мутация. Источник: Медицинский… … Медицинские термины

    ген-супрессор опухолей - Ген, осуществляющий контроль клеточного роста, повреждение функций которого может приводить к развитию ракового заболевания Тематики биотехнологии EN tumor suppressor gene … Справочник технического переводчика

    Запрос «Супрессор» перенаправляется сюда; см. также другие значения. Ген супрессор опухолей (антионкоген, опухолевый супрессор) ген, продукт которого обеспечивает профилактику опухолевой трансформации клеток. Белковые продукты генов… … Википедия

    ген селектируемый - * ген селекцыйны * selected gene ген, обеспечивающий клетке возможность выживания на определенной селективной среде, напр., в присутствии антибиотиков. Ген селектор * ген селектар * selector gene ген, контролирующий развитие отдельных блоков… … Генетика. Энциклопедический словарь

    Аллель Словарь русских синонимов. ген сущ., кол во синонимов: 14 аллель (3) ген кандидат … Словарь синонимов

Книги

  • Иммунологические проблемы апоптоза , А. Ю. Барышников, Ю. В. Шишкин. Последнее десятилетие ознаменовалось бурным изучением процесса программированной клеточной смерти (апоптоза). Были открыты поверхностные клеточные рецепторы и их лиганды, опосредующие…

Если белки, кодируемые онкогенами, способствуют развитию , то мутации в генах-супрессорах опухолевого роста содействуют малигнизации по другому механизму и при потере функции обоих аллелей гена.

Гены-супрессоры опухолевого роста очень разнородны. Некоторые из них действительно подавляют опухоли, регулируя клеточный цикл или вызывая запрет роста за счет межклеточного контакта; гены-супрессоры опухолевого роста этого типа - ХКЦ, поскольку они непосредственно регулируют рост клетки.

Другие гены-супрессоры опухолевого роста , гены «дворники», участвуют в репарации поломок ДНК и поддерживают целостность генома. Утрата обоих аллелей генов, задействованных в репарации ДНК или хромосомных поломок, приводит к раку косвенно, позволяя накапливаться последующим вторичным мутациям, как в протоонкогенах, так и в других генах-супрессорах опухолевого роста.

Продукты большинства генов-супрессоров опухолевого роста выделены и описаны. Поскольку гены-супрессоры опухолевого роста и их продукты защищают против рака, есть надежда, что их понимание в конечном счете приведет к улучшению методов противораковой терапии.


Гены супрессоры опухолевого роста :
1. Ген супрессор опухолевого роста RB1 : функции гена: синтез p110, регуляция клеточного цикла. Опухоли при патологии гена: ретинобластомы, мелкоклеточная карцинома легкого, рак груди.

2. : функции гена: синтез p53, регуляция клеточного цикла. Болезни при патологии гена: Синдром Ли-Фраумени, рак легких, рак груди, многие другие.

3. Ген супрессор опухолевого роста DCC : функции гена: рецептор Dcc, снижение выживания клетки при отсутствии сигнала выживания от его лиганда нейтрина. Болезни при патологии гена: колоректальный рак.

4. Ген супрессор опухолевого роста VHL : функции гена: синтез Vhl, часть форм цитоплазматического комплекса уничтожения с АРС, который в норме в присутствии кислорода тормозит индукцию роста кровеносных сосудов. Болезни при патологии гена: синдром Хиппеля-Линдау, светлоклеточная почечная карцинома.

5. Гены супрессор опухолевого роста BRCA1, BRCA2 : функции гена: синтез Brcal, Brca2, репарация хромосом в ответ на двойные разрывы ДНК. Болезни при патологии гена: рак груди, рак яичников.

6. Гены супрессор опухолевого роста MLH1, MSH2 : функции гена: синтез Mlhl, Msh2, репарация нуклеотидных несовпадений между нитями ДНК. Болезни при патологии гена: колоректальный рак.

Общим звеном в возникновении опухолей является онкоген, внесенный в клетку вирусом, или возникший из протоонкогена в результате мутации, или выведенный из-под контроля сдерживающих генов хромосомной транслокацией [Альбертс Б., Брей Д. и др,1994 ]. Но в последние годы найдено еще одно, по-видимому, наиболее общее звено канцерогенеза - гены-супрессоры опухолей, подавляющие активность онкогенов [ Sci. Amer. Spec. Iss. ].

Геном ДНК-содержащих опухолеродных вирусов, точнее отдельные гены, входящие в геном, и продукты этих генов, такие как LT-антиген (большой T-антиген) онкогенного паповавируса , соединяясь с клеточным белком, подавляющим пролиферацию клетки и участвующим в регуляции пролиферации, инактивирует его и создает тем самым автономную нерегулируемую пролиферацию. Гены-мишени, определяющие синтез соответствующих белков, получили название генов-супрессоров опухолевого роста, а открыты они были при изучении онкогенной активности ДНК- содержащих вирусов [Weinberg, 2006d , Альтштейн, 2004 ]. Такой механизм был установлен для паповавирусов (папилломы , полиомы , SV40) и аденовирусов . Очевидно, что он совсем другой, чем у онкорнавирусов .

В настоящее время представления о генетической природе развития онкологических заболеваний основаны на предположении о существовании генов, нормальная функция которых связана с подавлением опухолевого роста. Такие гены были названы генами-супрессорами опухолевого роста. Дефекты этих генов приводят к прогрессии, а восстановление функции - к существенному замедлению пролиферации или даже реверсии развития опухоли.

Главный представитель этих генов - ген р53 , контролирующий синтез белка р53 (р53 - от protein, белок, молекулярный вес которого 53 000 дальтон). Этот ген, вернее, его продукт р53 жестко контролирует активность протоонкогенов, разрешая ее только в строго определенные периоды жизни клетки, когда, например, надо, чтобы клетка вступила в процесс деления. р53 контролирует также апоптоз, запрограммированную гибель клетки, направляя клетку к самоубийству, если у нее поврежден генетический аппарат - ее ДНК. Тем самым р53 стабилизирует генетическую структуру клетки, предотвращая появление вредоносных мутаций, в том числе и опухолеродных. Онкогены некоторых вирусов связывают р53 и инактивируют его, а это ведет к освобождению клеточных протоонкогенов, отмене апоптоза и тем самым к накоплению жизнеспособных мутаций в клетке.

Такие клетки представляют собой благоприятный материал для отбора на автономность , то есть к выходу на путь, ведущий к образованию опухолей. Многие, если не большинство опухолей человека возникают путем ступенчатой эволюции, в начале которой лежит инактивация гена р53 путем его случайной или индуцированной мутации или инактивации вирусным онкогеном. Типы онкогенов и антионкогенов представлены на рис. 1 и в табл. 1 .

Ген-супрессор - ген, отсутствие продукта которого стимулирует образование опухоли. В отличие от онкогенов мутантные аллели генов- супрессоров рецессивны. Отсутствие одного из них, при условии, что второй нормален, не приводит к снятию ингибирования образования опухоли.

В 80-90-х годах обнаружены клеточные гены, осуществляющие негативный контроль клеточной пролиферации , т.е. препятствующие вступлению клеток в деление и выходу из дифференцированного состояния. Благодаря своему противоположному по отношению к онкогенам функциональному назначению они были названы антионкогенами или генами-супрессорами злокачественности (опухолевого роста) ( Rayter S.I. et al., 1989).

Таким образом, протоонкогены и гены-супрессоры образуют сложную систему позитивно-негативного контроля клеточной пролиферации и дифференцировки, а злокачественная трансформация реализуется через нарушение этой системы.

Нормальное размножение клеток контролируется сложным взаимодействием генов, стимулирующих пролиферацию (протоонкогены), и генов, ее подавляющих (гены-супрессоры, или антионкогены). Нарушение этого баланса приводит к возникновению злокачественного роста , которое определяется активацией протоонкогенов и превращению их в онкогены и инактивацией генов супрессоров, освобождающих клетки от механизмов, ограничивающих их пролиферацию.

Супрессия злокачественности была выявлена методами генетики соматических клеток , в результате анализа наследования некоторых форм рака и в экспериментах по трансфекции антионклгенами опухолевых клеток.

Открытие генов, супрессирующих клеточное размножение и злокачественный рост - одно из важнейших открытий последних лет в области биологии. Оно безусловно призвано внести заметный вклад в решение многих проблем, стоящих как перед медициной, так и перед фундаментальной наукой. В области медицины открывается возможность использования генов супрессоров в генной терапии рака .

Гены, тормозящие пролиферацию клеток, получили название гены-супрессоры опухолевого роста (употребляется также термин "антионкогены", хотя это нежелательно). Утрата функции этих генов вызывает неконтролируемую клеточную пролиферацию.

Иногда при доминантных болезнях, для которых характерно образование опухолей, различия в экспрессивности обусловлены дополнительными мутациями в генах-супрессорах опухолевого роста.

Примерами генов-супрессоров служат: ген ответственный за развитие ретинобластомы - ген Rb1 ; два гена, отвечающие за развитие рака молочной железы - ген BRCA2 и ген BRCA1 ; также к генам-супрессорам можно отнести ген WT1 - повреждения которого приводят к нефробластоме ; ген CDKN2A и ген CDKN2B , ответственные за развитие меланомы и гематологических опухолей , соответственно. Существуют и другие гены, которые можно отнести к генам-супрессорам. Инактивация гена hMLH1 приводит к возникновению карциномы желудка и карциномы толстого кишечника .

Гены - "хранители клеточного цикла" напрямую вовлечены в его регуляцию. Их белковые продукты способны сдерживать опухолевую прогрессию, ингибируя процессы, связанные с делением клетки. Дефекты "генов общего контроля" приводят к повышению нестабильности генома, увеличению частоты возникновения мутаций, и, следовательно, к повышению вероятности повреждения генов, в том числе и "хранителей клеточного цикла". К группе "хранителей клеточного цикла" (ХКЦ) относят такие гены как RB1 ( ретинобластома), WT1 ( опухоль Вильмса), NF1 ( нейрофиброматоз типа I), а также гены, способствующие образованию клеточных контактов, и другие. Если унаследована поврежденная копия гена ХКЦ, образование опухоли может быть инициировано соматической мутацией в неповрежденном аллеле. Поэтому в случае наследственных форм опухолей, когда имеется герминальная мутация , для начала заболевания необходимо всего одно соматическое мутационное событие - повреждение единственного функционального аллеля. Спорадические случаи возникновения опухоли того же типа требуют двух независимых мутационных событий в обоих аллелях. В итоге, для носителей мутантного аллеля вероятность развития данного типа опухоли значительно выше, чем в среднем по популяции.

Инактивация генов "общего контроля" (ОК) приводит к дестабилизации генома - повышается вероятность мутации генов ХКЦ. Дефект последних приводит к появлению опухоли. На фоне поврежденного гена ОК продолжается накопление мутаций, инактивирующих другие супрессоры первой или второй группы, что приводит к быстрому росту опухоли. При семейных случаях развития некоторых видов рака, мутация в одном из аллелей соответствующего гена ОК может быть унаследована от родителей. Для инициации опухолевого процесса требуется соматическая мутация второго аллеля, а также инактивация обоих аллелей какого-либо гена ХКЦ.

Таким образом, для развития опухоли в семейном случае необходимы три независимых мутационных события. Поэтому риск развития опухоли для носителей наследственной мутации гена ОК на порядок меньше, чем риск для носителя поврежденного аллеля гена ХКЦ. Спорадические опухоли обусловлены соматическими мутациями генов ОК. Они встречаются редко и для их возникновения и развития необходимо четыре независимых мутации. Примерами генов ОК служат гены, ответственные за развитие наследуемого неполипозного рака кишечника - ген MSH-2 и ген MLH-1 . Также к этой группе можно отнести широкоизвестный ген-супрессор - р53 , мутации или делеции которого наблюдаются примерно в 50% всех злокачественных заболеваний.

Введение.

Канцерогенез - многоступенчатый процесс накопления мутаций и других генетических изменений, приводящих к нарушениям ключевых клеточных функций, таких как регуляция пролиферации и дифференцировки, естественной гибели клеток (апоптоз ), морфогенетических реакций клетки, а также, вероятно, к неэффективному функционированию факторов специфического и неспецифического противоопухолевого иммунитета . Только совокупность таких изменений, приобретаемая, как правило, в результате довольно длительной эволюции неопластических клонов, в ходе которой происходит отбор клеток с необходимыми признаками, может обеспечить развитие злокачественного новообразования. Вероятность возникновения в одной клетке нескольких генетических изменений резко повышается при нарушениях работы систем, контролирующих целостность генома. Поэтому мутации, ведущие к генетической нестабильности, также являются неотъемлемым этапом опухолевой прогрессии. Более того, некоторые врожденные аномалии систем генетического контроля являются фактором, предопределяющим неизбежное возникновение новообразования: они настолько увеличивают вероятность появления в каждой клетке организма различных онкогенных мутаций, что у индивидуума раньше или позже в какой-то из клеток пролиферирующего клона под давлением отбора обязательно накопится необходимая совокупность изменений и образуется опухоль.

Значительный прогресс в понимании механизмов канцерогенеза связан с открытием сначала онкогенов и протонкогенов, а затем - опухолевых супрессоров и мутаторных генов . Онкогены - это клеточные или вирусные (вносимые вирусом в клетку) гены, экспрессия которых может привести к развитию новообразования. Протоонкогены - нормальные клеточные гены, усиление или модификация функции которых превращает их в онкогены. Опухолевые супрессоры (антионкогены , рецессивные опухолевые гены) - клеточные гены, инактивация которых резко увеличивает вероятность возникновения новообразований, а восстановление функции, наоборот, может подавить рост опухолевых клеток. Следует заметить, что причисляемые к опухолевым супрессорам так называемые "мутаторные" гены, т.е. гены, нарушения функции которых тем или иным способом увеличивает темп возникновения мутаций и/или других генетических изменений, могут и не влиять на рост неопластических клеток. Однако их инактивация столь сильно увеличивает вероятность появления различных онкогенных мутаций, что образование опухоли становится лишь делом времени.

Принадлежность к онкогенам или опухолевым супрессорам определяется несколькими критериями: а) закономерным характером изменений структуры и/или экспрессии данного гена в клетках определенных или различных новообразований; б) возникновением в юном или молодом возрасте определенных форм опухолей у индивидов с передающимися по наследству герминальными (т.е. произошедшими в половой клетке) мутациями данного гена; в) резким повышением частоты появления опухолей у трансгенных животных, либо экспрессирующих активированную форму данного гена - в случае онкогенов, либо несущих инактивирующие мутации ("нокаут") данного гена - в случае опухолевых супрессоров; г) способностью вызывать в культивируемых in vitro клетках морфологическую трансформацию и/или неограниченный рост (онкогены), либо подавление клеточного роста и/или выраженности признаков трансформации (опухолевые супрессоры).

Два последних десятилетия характеризовались бурным открытием все новых и новых онкогенов и опухолевых супрессоров. К настоящему времени известно около сотни потенциальных онкогенов (клеточных и вирусных) и около двух десятков опухолевых супрессоров. Были описаны генетические события, приводящие к активации протоонкогенов или инактивации опухолевых супрессоров . Обнаружено, что механизм действия вирусных онкогенов связан с активацией клеточных протоонкогенов (ретровирусы ) или инактивацией опухолевых супрессоров (ДНК-содержащие вирусы ) . Выявлены характерные для тех или иных форм новообразований человека изменения онкогенов и опухолевых супрессоров, в том числе высокоспецифичные аномалии, используемые для постановки диагноза (табл. 1, 2).

Таблица 1.
Некоторые изменения протоонкогенов, характерные для новообразований человека

Протоонкоген Функция белка Изменения Новообразования*
ERBB1 (EGF-R) рецепторная тирозинкиназа амплификация и гиперэкспрессия гена глиобластомы и другие нейрогенные опухоли
ERBB2 (HER2) рецепторная тирозинкиназа рак молочной железы
PDGF-Rb рецепторная тирозинкиназа хромосомные транслокации, образующие химерные гены TEL/ PDGF-Rb, CVE6/PDGF-Rb , кодирующие постоянно активированные рецепторы хронический миеломоноцитарный лейкоз, острый миелобластный лейкоз
SRC нерецепторная тирозинкиназа мутации в кодоне 531, отменяющие негативную регуляцию киназной активности часть опухолей толстого кишечника на поздних стадиях
K-RAS, N-RAS,H-RAS участвует в передаче митогенных сигналов и регуляции морфогенети-ческих реакций мутации в кодонах 12,13,61, вызывающие образование постоянно активированной GTP-связанной формы Ras 60-80% случаев рака поджелудочной железы; 25-30% различных солидных опухолей и лейкозов
PRAD1/циклинD1 регулирует клеточный цикл амплификация и/или гиперэкспрессия гена рак молочной и слюнных желез
C-MYC фактор транскрипции, регулирует клеточный цикл и активность теломеразы а) хромосомные транслокации, перемещающие ген под контроль регуляторных элементов генов иммуноглобулинов;
б) амплификация и/или гиперэкспрессия гена; мутации, стабилизирую-щие белок
а) лимфома Бэркита
б) многие формы новообразований
CTNNB1 (beta-катенин) а) транскрипционный фактор, регулирет c-MYC и циклин D1;
б) связываясь с кадхерином, участвует в образовании адгезионных контактов
мутации, увеличивающие количество несвязанного с Е-кадхерином beta-катенина, который функционирует как транскрипционный фактор наследственный аденоматозный полипоз толстой кишки;
BCL2 подавляет апоптоз, регулируя проницаемость митохондриальных и ядерных мембран хромосомные транслокации, перемещающие ген под контроль регуляторных элементов генов иммуноглобулинов фолликулярная лимфома
ABL регулирует клеточный цикл и апоптоз хромосомные транслокации, ведущие к образованию химерных генов BCR/ABL, продукты которых стимулируют пролиферацию клеток и подавляют апоптоз все хронические миелоидные лейкозы, часть острых лимфобластных лейкозов
MDM2 инактивирует р53 и pRb амплификация и/или гиперэкспрессия гена часть остеосарком и сарком мягких тканей

* Курсивом выделены наследственные формы заболеваний, возникающие при мутациях в половых клетках. В остальных случаях мутации происходят в соматических клетках, которые образуют опухоли

Таблица 2.
Формы опухолей человека, возникающие при инактивации некоторых опухолевых супрессоров и мутаторных генов

Ген Функция белка Новообразования*
p53 транскрипционный фактор; регулирует клеточный цикл и апоптоз, контролирует целостность генома синдром Ли-Фраумени
и большинство форм спорадических опухолей
INK4a-ARF ингибирование Cdk4**, активация р53** наследственные меланомы и
Rb контролирует вход в S-фазу, регулируя активность фактора транскрипции E2F наследственные ретинобластомы
TbR-II рецептор второго типа для цитокина TGF-b наследственные и спорадические раки толстой кишки
SMAD2, SMAD 3 передают сигнал от активированных рецепторов TGF-b к Smad4 рак толстой кишки, легкого, поджелудочной железы
SMAD4/DPC4 транскрипционный фактор; опосредует действие цитокина TGF-b, приводящее к активации ингибиторов Cdk - p21WAF1, p27KIP1, p15INK4b ювенильный гамартоматозный полипоз желудка и кишечника; различные формы спорадических опухолей
Е-кадхерин участвует в межклеточных взаимодействиях; инициирует передачу сигналов, активирующих р53, p27KIP1 наследственные раки желудка и многие формы спорадических опухолей
APC связывает и разрушает цитоплазматический beta-катенин, препятствует образованию транскрипционных комплексов beta-катенин/Tcf наследственный аденоматозный полипоз и спорадические опухоли толстой кишки
VHL подавляет экспрессию гена VEGF (фактора роста эндотелия сосудов) и других генов, активируемых при гипоксии синдром фон Хиппеля-Линдау (множественные гемангиомы); светлоклеточные карциномы почки
WT1 транскрипционный фактор; связываясь с р53, модулирует экспрессию р53-респонсивных генов наследственные нефробластомы (опухоль Вилмса)
PTEN/MMAC1 фосфатаза; стимулирует апоптоз, подавляя активность PI3K-PKB/Akt сигнального пути болезнь Коудена (множественные гамартомы); многие спорадические опухоли
NF1 (нейрофибромин) белок семейства GAP;переводит онкоген ras из активной в неактивную форму нейрофиброматоз первого типа
NF2 (мерлин) участвует во взаимодействиях мембраны с цитоскелетом нейрофиброматоз второго типа; спорадические менингиомы, мезотелиомы и др. опухоли
BRCA1 повышает активность р53 и других факторов транскрипции, связываясь с RAD51 участвует в узнавании и/или репарации повреждений ДНК различные формы спорадических опухолей
BRCA2 траскрипционный фактор с активностями гистоновой ацетил-трансферазы; связываясь с RAD51 участвует в репарации ДНК наследственные опухоли молочной железы и яичников; различные формы спорадических опухолей
MSH2, MLH1, PMS1, PMS2 репарация неспаренных участков ДНК (mismatch repair) неполипозный рак толстой кишки и яичников; многие спорадические опухоли

* Курсивом выделены наследственные формы заболеваний, возникающие при мутациях в половых клетках.
**
Локус INK4a/ARF кодирует два белка: p16 INK4a - ингибитор циклинзависимых киназ Cdk4/6 и p19 ARF (Alternative Reading Frame) - продукт альтернативной рамки считывания, который, связывая р53 и Mdm2, блокирует их взаимодействие и препятствует деградации р53 . Делеции и многие точечные мутации в локусе INK4a/ARF вызывают одновременно инактивацию супрессорных активностей обоих этих белков .

Однако долгое время знания о каждом из онкогенов или опухолевых супрессоров представлялись дискретными, в значительной мере не связанными между собой. И лишь в самые последние годы стала вырисовываться общая картина, показывающая, что подавляющее большинство известных протоонкогенов и опухолевых супрессоров являются компонентами нескольких общих сигнальных путей, контролирующих клеточный цикл, апоптоз, целостность генома, морфогенетические реакции и дифференцировку клеток . Очевидно, изменения именно в этих сигнальных путях в конце концов и приводят к развитию злокачественных новообразований. приведены сведения об основных мишенях действия онкогенов и опухолевых супрессоров.