Общие механизмы и основные проявления повреждения клетки. Общие механизмы повреждения клеток Нарушение процессов энергообразования в клетке

Энергообеспечение может расстраиваться на этапах синтеза АТФ, транспорта и утилизации энергии.

1. Синтез АТФ нарушается в результате (1) дефицита кислорода и/ или субстратов метаболизма, (2) снижения интенсивности гликолиза и тканевого дыхания, (3) разобщения дыхания с фосфорилированием.

2. Энергия АТФ доставляется из мест ее синтеза (митохондрий и гиалоплазмы) к эффекторным структурам (миофибриллам, ионным насосам мембран и т.п.) с помощью ферментных систем транслоказ - адениннуклеотидтрансферазы и креатинфосфокиназа.

3. Возможно повреждение ферментных систем, обеспечивающих утилизацию энергии АТФ - АТФ-азы: АТФ-аза актомиозина, АТФ-аза калий-натриевого насоса плазмолеммы, АТФ-аза кальциевого насоса саркоплазматического ретикулума и т.п. Следует отметить, что нарушение процессов энергообеспечения может стать одним из факторов расстройства функций мембран и фиксированных на них ферментов.

2. ПОВРЕЖДЕНИЕ МЕМБРАН И ФЕРМЕНТНЫХ СИСТЕМ КЛЕТКИ

Одним из важнейших механизмов нарушений мембран и ферментов является свободно-радикальные реакции - перекисное свободно-радикальное окисление липидов (ПОЛ). Эти реакции постоянно протекают в клетках и в норме, являясь звеном таких жизненно важных процессов, как транспорт электронов в дыхательной цепочке, синтез простагландинов, фагоцитоз, пролиферация и т.п. Перекисное свободно-радикальное окисление участвует в процессах регуляции липидного состава мембран и активности ферментов. Интенсивность ПСОЛ регулируется соотношением факторов, активирующих и подавляющих этот процесс. Они называются прооксиданты и антиоксиданты. К числу прооксидантов относятся нафтохинон, витамины А и D, восстановители НАДФН2 и НАДН2, липоевая кислота, продукты метаболизма простагландинов.

В реакцию пероксидации могут вовлекаться липиды, белки, нуклеиновые кислоты и фосфолипиды, которые являются основными компонентами биомембран. ПСОЛ можно разделить на три этапа:

1) кислородная инициация,

2) образование свободных радикалов,

3) продукция перекисей липидов.

На первом этапе ПОЛ образуются активные формы кислорода: супероксидный радикал кислорода (О -), гидроксильный радикал (ОН -), перекись водорода (О 2 Н 2), радикал гидропероксида (НО 2 -). Эти соединения образуют активные радикалы липидов и их перекиси. При этом реакция может приобретать лавинообразный характер.

Для предотвращения подобного рода реакций в клетках протекают антиоксидантные защитные процессы. Такие антиоксидантные реакции могут идти с участием и без участия ферментов. Среди звеньев антиоксидантной системы следует выделить такие факторы, как ретинол, каротиноиды, рибофлавины, токоферолы, маннитол, ферменты - супероксиддисмутаза, глютатионпероксидаза, каталаза. Чрезмерная активация свободно-радикальных и перекисных реакций является главным фактором повреждения мембран и ферментов клетки. В этом отношении ведущее значение приобретают следующие процессы:



1) изменения физико-химических свойств липидов мембран, что ведет к снижению активности ферментов, последствиями чего являются нарушения реакций трансмембранный перенос ионов и молекул, структурной целостности мембран.

2) изменения физико-химических свойств белковых молекул, включая ферментные системы клетки.

3) формирование структурных дефектов мембран, так называемых простейших каналов - кластеров вследствие внедрения в них продуктов ПСОЛ. Это ведет к объединению многих мембран, их фрагментации и гибели клетки.

Повреждение мембран может происходить под действием свободных ферментов и ферментов лизосом – липазами, фосфолипазами, протеазами. В результате повреждения мембран значительно повышается их проницаемость. Кроме того, под действием гидролаз в клетке накапливаются свободные жирные кислоты и лизофосфолипиды - фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Такие соединения называются амфифильные, так как они способны проникать и фиксироваться в обеих фазах мембраны - гидрофобной и гидрофильной. Накопление значительного количества амфифильных соединений в клетке ведет к формированию в мембране кластеров и микроразрывов с последующей гибелью клетки.

Эта группа нарушений обусловлена блокадой образования, транспорта и утилизации АТФ.

Образование АТФ блокируется при снижении содержания кислорода и глюкозы, прямом повреждении митохондрий и разобщении цепи аэробного фосфорилирования и др. Транспорт АТФ связан с ингибированием ферментных комплексов внутренней мембраны митохондрии (сниженная активность адениннуклеотидтрансферазы и креатинфосфокиназы), нарушением циклоза. Блокирование утилизации АТФ происходит при подавлении АТФазной активности.

Синтез АТФ сопряжен с интенсивными ферментными процессами в митохондриях. Активность митохондрий зависит от разнообразных внутренних и внешних факторов. Функциональная недостаточность митохондрий может быть абсолютной или относительной. Абсолютная недостаточность энергетического обеспечения клетки вызывается значительным снижением функциональной активности митохондрий, не удовлетворяющей даже обычным физиологическим потребностям клетки. Подобные нарушения вызывают прямые повреждения органелл токсическими веществами, блокаду трансляции рРНК, разобщение цепей окислительного фосфорилирования, блокаду активности отдельных ферментов (например, цитохромов) митохондрий. Внутриклеточный ацидоз, избыток в клетке ионов кальция, неэтерифицированные жирные кислоты, избыточное действие на клетку адреналина и гормонов щитовидной железы, микробные токсины, побочное действие антибиотиков, недостаток и избыток кислорода разобщают аэробное окислительное фосфорилирование.

Относительная недостаточность энергетического обеспечения связана с резким усилением потребности клетки в энергии, когда даже повышенная активность митохондрий не может ее удовлетворить. Примером подобного явления служит резкое усиление потребления энергии сердечным миоцитом или скелетным мышечным волокном при тяжелой физической нагрузке.

Относительная или абсолютная недостаточность энергетического обмена клеток и неклеточных структур (симпласта и синцития) может быть обусловлена низким поступлением в клетку энергетических субстратов, в первую очередь глюкозы. Так, при сокращении скелетного мышечного волокна его потребность в газообмене и глюкозе увеличивается в десятки раз. Даже усиление кровоснабжения недостаточно для полного обеспечения потребностей. Недостаток глюкозы восполняется разрушением эндогенных запасов гликогена и частичным переходом к анаэробному гликолизу. Последний процесс сопровождается накоплением продуктов промежуточного обмена с развитием метаболического ацидоза.

Блокада протонной помпы внутренней мембраны митохондрии, ферментов-переносчиков энергии (аденилнуклеотидтрансферазы, креатинфосфокиназы) вызывает значительное затруднение переноса энергии АТФ от митохондрий к местам ее потребления. В этом случае даже достаточный синтез АТФ в митохондриях сопровождается энергетическим голоданием.

Врожденное или приобретенное подавление АТФаз клетки обычно носит парциальный характер: подавляется либо один, либо группа близких ферментов. Разнообразные энергоемкие процессы в клетке предполагают активность специфических АТФаз, превращающих химическую энергию АТФ в механическую работу, транспортные процессы против градиентов концентрации, химические реакции синтеза и др. Ко многим из них на сегодня найдены химические препараты, блокирующие активность АТФаз. Блокада АТФаз сопровождается снижением или полным прекращением обеспечиваемых ими процессов. Так, блокируя АТФазу Na + /K + -Hacoca, нарушается поддержание мембранного потенциала клетки.

В случае полного прекращения энергетического обеспечения наступает мгновенная смерь клетки, то есть прекращаются функциональные процессы в клетке, характеризующие ее как целостную систему. Остаточные ферментные реакции, взаимодействия на уровне отдельных макромолекулярных комплексов и даже органелл не в состоянии продлить существование клетки как структурной единицы живого.

При недостаточности энергетического обеспечения, превышении разрушения АТФ в сравнении с его синтезом в клетке накапливаются АМФ и АДФ, которые могут существенно изменять функциональное состояние клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-2.jpg" alt="> План лекции 1. Повреждение клетки, понятие, этиология. 2. Виды повреждения клетки."> План лекции 1. Повреждение клетки, понятие, этиология. 2. Виды повреждения клетки. Стадии острого и хронического повреждения клетки. 3. Специфические и неспецифические проявления повреждения клетки. 4. Виды гибели клетки. Некроз и апоптоз. Патогенез апоптоза. 5. Общие механизмы повреждения клетки. Патогенез повреждения клеточных мембран.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-3.jpg" alt="> Дисбаланс ионов и жидкости в патогенезе повреждения клетки. Нарушение"> Дисбаланс ионов и жидкости в патогенезе повреждения клетки. Нарушение энергообеспечения процессов, протекающих в клетке. Защитно-компенсаторные реакции при повреждении клетки.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-4.jpg" alt="> ПОВРЕЖДЕНИЕ КЛЕТКИ - это нарушение структуры и функции клетки "> ПОВРЕЖДЕНИЕ КЛЕТКИ - это нарушение структуры и функции клетки Причины Экзогенные Эндогенные Мех. воздействия, Избыток или дефицит электрический ток, О 2, ионов Н+, К+, Са++, высокая, низкая свободные радикалы, температура, колебания электромагнитные волны, осмотического ионизирующая радиация, давления, метаболиты, кислоты, щелочи, соли продукты распада тяжелых металлов, микробов, медиаторы лекарства, микробы, повреждения, вирусы, грибы, иммунные комплексы и психогенные факторы др.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-5.jpg" alt=">Резистентность клетки к повреждению зависит от 1. Вида клеток Высокоспециализированные клетки"> Резистентность клетки к повреждению зависит от 1. Вида клеток Высокоспециализированные клетки (нервные и мышечные) с высоким уровнем внутриклеточной регенерации устойчивы к повреждению

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-6.jpg" alt="> Клетки с низким внутриклеточным уровнем регенерации (клетки крови, кожи, кишечный"> Клетки с низким внутриклеточным уровнем регенерации (клетки крови, кожи, кишечный эпителий) легко повреждаются.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-7.jpg" alt="> 2. Состояния гликокалекса Нарушение образования гликокалекса уменьшает устойчивость клетки к"> 2. Состояния гликокалекса Нарушение образования гликокалекса уменьшает устойчивость клетки к повреждению

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-8.jpg" alt=">3. Микроокружения клеток (состояния соединительной ткани) Микроокружение регулирует дифференцировку и пролиферацию клеток ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-9.jpg" alt="> 4. Состояния нервной и эндокринной регуляции Денервированные клетки легче"> 4. Состояния нервной и эндокринной регуляции Денервированные клетки легче повреждаются. Нервная система регулирует энергетические и пластические процессы в клетке. Клетка, лишенная нервной и эндокринной регуляции подвергается апоптозу. Повреждение клетки может быть связано с поступлением по аксонам патотрофогенов – веществ, образующихся в поврежденных нейронах и вызывающих патологические изменения клеток- реципиентов.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-10.jpg" alt="> 5. Состояния макроорганизма Авитаминозы, белковая недостаточность снижают резистентность клетки к повреждению ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-11.jpg" alt="> 6. Фазы жизненного цикла клетки К различным воздействиям клетка по- разному чувствительна в"> 6. Фазы жизненного цикла клетки К различным воздействиям клетка по- разному чувствительна в разные фазы цикла (ионизирующая радиация повреждает клетку в фазах G 1 и G 2)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-12.jpg" alt="> ВИДЫ ПОВРЕЖДЕНИЯ КЛЕТКИ ОСТРОЕ этиологический ХРОНИЧЕСКОЕ фактор действует этиол. фактор непродолжитель-"> ВИДЫ ПОВРЕЖДЕНИЯ КЛЕТКИ ОСТРОЕ этиологический ХРОНИЧЕСКОЕ фактор действует этиол. фактор непродолжитель- малой ное время, интенсивности, достаточно действует интенсивный продолжительно

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-13.jpg" alt=">ПРЯМОЕ (ПЕРВИЧНОЕ) - непосредственное повреждение клетки этиологическим фактором. ОПОСРЕДОВАННОЕ (ВТОРИЧНОЕ) -"> ПРЯМОЕ (ПЕРВИЧНОЕ) - непосредственное повреждение клетки этиологическим фактором. ОПОСРЕДОВАННОЕ (ВТОРИЧНОЕ) - является следствием первичного, развивается под действием БАВ - медиаторов повреждения, нарушения регуляции и т. д.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-14.jpg" alt="> Парциальное Обратимое Тотальное Необратимое ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-15.jpg" alt=">А- клетка нормального эпителия В- обратимое повреждение С- необратимое повреждение ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-16.jpg" alt="> Стадии острого повреждения клетки 1. Первичное специфическое воздействие повреждающего"> Стадии острого повреждения клетки 1. Первичное специфическое воздействие повреждающего фактора 2. неспецифическая реакция клетки 3. паранекроз (обратимое повреждение) 4. некробиоз («агония» клетки) 5. некроз

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-17.jpg" alt=">Стадии хронического повреждения клетки 1. Аварийная Повышение функций оставшихся"> Стадии хронического повреждения клетки 1. Аварийная Повышение функций оставшихся структур, активация генетического аппарата клетки активация синтетических процессов 2. Стадия устойчивой адаптации Гипертрофия и гиперплазия структур клетки, стабилизация синтеза РНК, белков и АТФ 3. Стадия дистрофических изменений и гибели клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-18.jpg" alt="> ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК Специфические Неспецифические СПЕЦИФИЧЕСКИЕ"> ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК Специфические Неспецифические СПЕЦИФИЧЕСКИЕ Обусловлены особенностью (специфическим действием) этиологического фактора: цианиды блокада цитохромоксидазы; механическое воздействие разрыв мембран; высокая температура коагуляция белков;

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-19.jpg" alt="> НЕСПЕЦИФИЧЕСКИЕ Сопровождают любое повреждение клеток: повышение проницаемости"> НЕСПЕЦИФИЧЕСКИЕ Сопровождают любое повреждение клеток: повышение проницаемости мембран угнетение активности транспортных ферментов, мембранных насосов нарушение рецепторного аппарата клеток нарушение ионного состава клетки, нарушение энергообразования, внутриклеточный ацидоз, Изменение мембранного потенциала

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-20.jpg" alt="> Типовые проявления повреждения клеток Ядро Хромосомные аберрации"> Типовые проявления повреждения клеток Ядро Хромосомные аберрации Рибосомы и полисомы Нарушение синтеза белка Лизосомы Ферментативное расщепление субклеточных структур (аутолизис) Цитоскелет Изменения формы (выпячивания, пузыри), (микротрубочки, нарушения движения (хемотаксис), деления, микрофиламенты) секреции Митохондрии Нарушение синтеза АТФ, депонирования кальция, набухание Плазматическая Нарушение разделительной, соединительной, мембрана контактной, транспортной и др. функций

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-21.jpg" alt="> Основные формы гибели клетки Некроз "> Основные формы гибели клетки Некроз Апоптоз НЕКРОЗ – генетически неконтролируемая форма гибели клетки при действии патологических стимулов АПОПТОЗ – генетически запрограммированная гибель клетки при действии патологических и физиологических стимулов

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-22.jpg" alt="> Некроз Признаки некроза (некробиоза): набухание клетки, гидролиз и"> Некроз Признаки некроза (некробиоза): набухание клетки, гидролиз и денатурация (коагуляция) цитоплазматических белков, разрушение плазматической и внутриклеточных мембран, высвобождение ферментов лизосом, выход внутриклеточного содержимого в межклеточное пространство Воспаление

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-23.jpg" alt="> Апоптоз Признаки апоптоза: сжатие клетки, "> Апоптоз Признаки апоптоза: сжатие клетки, уплотнение плазматической мембраны, конденсация ядерного хроматина, фрагментация ядра и цитоплазмы → апоптозные тельца Ф а г о ц и т о з (без воспаления)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-24.jpg" alt="> Ключевые (ядерные) признаки апоптоза конденсация ядерного хроматина "> Ключевые (ядерные) признаки апоптоза конденсация ядерного хроматина фрагментация ДНК (ядра) +

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-25.jpg" alt="> СТАДИИ АПОПТОЗА 1. Инициации 2. Программирования 3. Реализации"> СТАДИИ АПОПТОЗА 1. Инициации 2. Программирования 3. Реализации программы 4. Фагоцитоз апоптозных телец

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-26.jpg" alt=">Механизмы реализации апоптоза Рецепторный Митохондриальный р53 -опосредованный "> Механизмы реализации апоптоза Рецепторный Митохондриальный р53 -опосредованный Перфорин-гранзимовый

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-27.jpg" alt="> Рецепторный путь Рецептор cмерти (R) Лиганд (L) Активация"> Рецепторный путь Рецептор cмерти (R) Лиганд (L) Активация адаптерных белков → «домены смерти» Активация каспаз (протеаз) Фрагментация ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-29.jpg" alt=">Митохондриальный путь митохондрия Цитохром С Прокаспазы 2, 3, 9"> Митохондриальный путь митохондрия Цитохром С Прокаспазы 2, 3, 9 AIF Цитохром С Прокаспазы 2, 3, 9 AIF

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-30.jpg" alt=">Р 53 -опосредованный путь Накопление р53 "> Р 53 -опосредованный путь Накопление р53 Блок Апоптоз пролиферации Нерепарируемы Репарация е повреждения ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-31.jpg" alt=">Перфорин-гранзимовый путь Перфорин Клетка- киллер мишень "> Перфорин-гранзимовый путь Перфорин Клетка- киллер мишень Гранзим

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-32.jpg" alt=">Альтернативные формы генетически запрограммированной гибели клетки ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-33.jpg" alt=">Аутофагия – это процесс, при котором клетка избавляется от «клеточного мусора» –"> Аутофагия – это процесс, при котором клетка избавляется от «клеточного мусора» – поврежденных органелл и дефектных белков. Механизм мечение части клетки, подлежащей удалению обертывание ее мембраной с образованием вакуоли (аутофагосомы) слияние вакуоли с лизосомой (аутофаголизосома) и переваривание

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-34.jpg" alt=">Морфологические отличия от апоптоз Наличие многочисленных везикул и вакуолей, содержащих лизируемые компоненты клетки"> Морфологические отличия от апоптоз Наличие многочисленных везикул и вакуолей, содержащих лизируемые компоненты клетки Отсутствие ключевых признаков апоптоза: конденсированного хроматина разрывов (фрагментов) ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-35.jpg" alt="> PARAPTOSIS (параптоз) – околоядерный апоптоз – характеризуется набуханием"> PARAPTOSIS (параптоз) – околоядерный апоптоз – характеризуется набуханием ЭПР и митохондрий клетки при отсутствии ключевых признаков апоптоза. «Митотическая катастрофа» – гибель клетки в результате грубых нарушений митоза. Характеризуется образованием микроядер при отсутствии ключевых признаков апоптоза.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-36.jpg" alt="> ANOIKIS (анойкиз) – гибель клетки в результате утраты клеточно-матриксных взаимодействий."> ANOIKIS (анойкиз) – гибель клетки в результате утраты клеточно-матриксных взаимодействий. «the state of being without a home» – остаться без дома. SENESCENCE (сенесенс) – гибель клетки вследствие «одряхления» , т. е. при утрате способности отвечать на действие стимулов. Проявляется повышенной гранулярностью цитоплазмы, гиперэкспрессией антимитотического фактора р53.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-37.jpg" alt=">Формы гибели клетки: отличаются разнообразием определяются природой повреждающего фактора определяются"> Формы гибели клетки: отличаются разнообразием определяются природой повреждающего фактора определяются характером повреждений

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-39.jpg" alt="> Некроз Апоптоз Смерть поврежденной Программированная гибель "> Некроз Апоптоз Смерть поврежденной Программированная гибель клетки Отмечается необратимое Программа апоптоза прекращение запускается жизнедеятельности, информационным сигналом которому предшествует состояние паранекроза и некробиоза Является завершающим Завершается фагоцитозом этапом клеточных фрагментов разрушенной дистрофий клетки Является следствием Наступает в ходе многих действия на клетку естественных процессов и при высоко патогенных адаптации клетки к факторов повреждающим факторам

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-40.jpg" alt="> Некроз Апоптоз Морфологически отмечается Морфологически кариопикноз или кариолизис,"> Некроз Апоптоз Морфологически отмечается Морфологически кариопикноз или кариолизис, отмечается конденсация и набухание, сморщивание, фрагментация цитоплазмы, кальциноз в митохондриях конденсация и рексис ядра При лизисе клетки Не сопровождается происходит освобождение развитием воспаления содержимого в межклеточное пространство, что сопровождается развитием воспаления Лизис некр. клетки может Энергозависимый процесс, происходить под влиянием требует синтеза белка ферментов лизосом (аутолиз) и фагоцитозом (гетеролизис), без использования энергии

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-41.jpg" alt=">ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТКИ Повреждение мембранного аппарата и ферментных систем клетки"> ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТКИ Повреждение мембранного аппарата и ферментных систем клетки Нарушение энергетического обеспечения процессов, протекающих в клетке Дисбаланс ионов и жидкости в клетке Нарушение генетической программы клетки Расстройство внутриклеточных механизмов регуляции функции клеток

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-42.jpg" alt=">Повреждение мембранного аппарата и ферментных систем клетки Функции плазмолеммы ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-44.jpg" alt=">ПАТОГЕНЕЗ ПОВРЕЖДЕНИЯ МЕМБРАН Активация ПОЛ Активация мембранных фосфолипаз и других"> ПАТОГЕНЕЗ ПОВРЕЖДЕНИЯ МЕМБРАН Активация ПОЛ Активация мембранных фосфолипаз и других гидролаз Осмотическое (механическое) повреждение мембран Адсорбция на липидном слое крупномолекулярных комплексов, в том числе иммунное повреждение

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-45.jpg" alt="> АКТИВАЦИЯ ПОЛ 1. Избыточное образование свободных радикалов (действие ионизирующей"> АКТИВАЦИЯ ПОЛ 1. Избыточное образование свободных радикалов (действие ионизирующей радиации, ультрафиолетовых лучей, химических соединений (тяжелые металлы, CCl 4, фосфор, гербициды, пестициды) гипероксия, стресс, гипервитаминоз Д) 2. Нарушение функционирования антиоксидантных систем клетки (наследственное и приобретенное)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-46.jpg" alt="> ПРООКСИДАНТЫ АНТИОКСИДАНТЫ Вит Д, НАДФН 2, "> ПРООКСИДАНТЫ АНТИОКСИДАНТЫ Вит Д, НАДФН 2, СОД, каталаза, НАДН 2, глутатионперок- продукты сидаза, вит. Е, метаболизма белки, содержащие простагландинов SH-группы, и катехоламинов, глютатион, цистеин, металлы с ПОЛ церуллоплазмин, переменной трансферин валентностью

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-48.jpg" alt=">А) Образование свободных радикалов Воспаление Радиация Химические агенты Реперфузия Пероксидное окисление "> А) Образование свободных радикалов Воспаление Радиация Химические агенты Реперфузия Пероксидное окисление мембран Фрагментация Разрушение белков ДНК В) Повреждение клетки свободными радикалами С) Антиоксидантная защита клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-49.jpg" alt="> Цепная реакция перекисного окисления липидов. "> Цепная реакция перекисного окисления липидов. . НО + LH (ненасыщенная ЖК) H 2 O + L . . . L + O 2 LO 2 + LH LOOH + L . . НО + LO

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-50.jpg" alt="> J N N K K ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-51.jpg" alt="> ПОЛ Изменение физико-химических свойств, биохимического состава и структуры мембран клеток,"> ПОЛ Изменение физико-химических свойств, биохимического состава и структуры мембран клеток, разрушение нуклеиновых кислот, инактивация сульфгидрильных групп белков, подавление процессов окислительного фосфорилирования

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-52.jpg" alt=">АКТИВАЦИЯ МЕМБРАННЫХ ФОСФОЛИПАЗ И ДРУГИХ ГИДРОЛАЗ ишемия яды змей,"> АКТИВАЦИЯ МЕМБРАННЫХ ФОСФОЛИПАЗ И ДРУГИХ ГИДРОЛАЗ ишемия яды змей, пауков, укусы пчел увеличение содержания кальция в клетке повышение проницаемости лизосомальных мембран разрушение фосфолипидов мембран, цитоскелета клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-53.jpg" alt=">ОСМОТИЧЕСКОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Осмотическое давление "> ОСМОТИЧЕСКОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Осмотическое давление давление внутри клетки внеклеточного сектора См орщ кле Н 2 О тки ивани е

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-54.jpg" alt="> Осмотическое давление Осмотическое"> Осмотическое давление Осмотическое давление внеклеточного внутри клетки сектора Н 2 О Наб кле ухани тки е Разрыв мембран (осмотический гемолиз эритроцитов)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-55.jpg" alt=">Адсорбция крупномолекулярных комплексов ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-56.jpg" alt="> ИММУННОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Причины: взаимодействие"> ИММУННОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Причины: взаимодействие антител с рецепторами на поверхности мембран образование иммунных комплексов активация компонентов комплемента активация лимфоцитов-киллеров активация макрофагов комплекс с С 5 по С 9 компонентов комплемента, белок лимфоцитов-киллеров перфорин образование каналов в мембране лизосомальные ферменты, свободные радикалы кислорода

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-57.jpg" alt="> Последствия повреждения мембран Ø Повышение проницаемости Нарушение барьерной функции, гиперферментемия, ионный"> Последствия повреждения мембран Ø Повышение проницаемости Нарушение барьерной функции, гиперферментемия, ионный дисбаланс, увеличение сорбционной способности, развитие аутоиммунных процессов Ø Нарушение рецепторной функции Ø Нарушение процессов ионного транспорта и выработки энергии Ø Нарушение мембранного потенциала покоя и потенциала действия нарушение генерации и передачи электрических импульсов Ø Нарушение клеточного метаболизма и развитие внутриклеточного ацидоза

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-58.jpg" alt="> ИОННЫЙ ДИСБАЛАНС Причины Повреждение мембран"> ИОННЫЙ ДИСБАЛАНС Причины Повреждение мембран Энергетический дефицит мембранного Гиперкалиемия потенциала К+ Pосм. Na+, Ca++ Н 2 О отек клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-59.jpg" alt="> Последствия увеличения кальция в клетке Активация мембранных фосфолипаз, "> Последствия увеличения кальция в клетке Активация мембранных фосфолипаз, кальцийзависимых протеаз разобщение окисления и фосфорилирования в митохондриях стойкое сокращение миофибрилл (контрактуры) снижение адренореактивности

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-60.jpg" alt=">НАРУШЕНИЕ ЭНЕРГЕТИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В КЛЕТКЕ а) Снижение процессов ресинтеза АТФ ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-61.jpg" alt=">ØДефицит кислорода или субстратов метаболизма ØПовреждение митохондрий ØСнижение активности ферментов тканевого дыхания ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-62.jpg" alt=">б) Нарушение внутриклеточного транспорта энергии АТФ в) Нарушение использования "> б) Нарушение внутриклеточного транспорта энергии АТФ в) Нарушение использования энергии АТФ МИТОХОНДРИЯ АТФ-аза КФ КФ АТФ КФК Кр Кр АДФ

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-63.jpg" alt="> Последствия энергетического дефицита АТФ функции клетки АНАЭРОБНОГО ГЛИКОЛИЗА "> Последствия энергетического дефицита АТФ функции клетки АНАЭРОБНОГО ГЛИКОЛИЗА ИОННЫЙ ДИСБАЛАНС ЛАКТАТА КАЛЬЦИЯ АЦИДОЗ АКТИВАЦИЯ ЛИЗОСОМАЛЬНЫХ ГИДРОЛАЗ ФЕРМЕНТОВ АУТОЛИЗ

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-64.jpg" alt="> ЗАЩИТНО-КОМПЕНСАТОРНЫЕ РЕАКЦИИ ПРИ ПОВРЕЖДЕНИИ КЛЕТКИ ØОграничение функциональной активности клетки ØАктивация анаэробного гликолиза"> ЗАЩИТНО-КОМПЕНСАТОРНЫЕ РЕАКЦИИ ПРИ ПОВРЕЖДЕНИИ КЛЕТКИ ØОграничение функциональной активности клетки ØАктивация анаэробного гликолиза ØИнтенсификация ресинтеза АТФ в неповрежденных митохондриях ØАктивация ферментов транспорта и утилизации АТФ ØПовышение синтеза антиоксидантных ферменто Ø Активация механизмов репарации компонентов мембран

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-65.jpg" alt=">ØАктивация микросомального окисления в гепатоцитах ØАктивация буферных систем ØАктивация синтеза ферментов системы детоксикации ØАктивация"> ØАктивация микросомального окисления в гепатоцитах ØАктивация буферных систем ØАктивация синтеза ферментов системы детоксикации ØАктивация синтеза цитокинов (интерферонов) ØАктивация синтеза белков «теплового шока» Ø Гиперплазия и гипертрофия субклеточных структур

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-66.jpg" alt="> БТШ являются многофункциональными клеточными регуляторами, которые синтезируются при любом"> БТШ являются многофункциональными клеточными регуляторами, которые синтезируются при любом повреждении клетки. Впервые они были обнаружены в клетках дрозофил, подвергшихся тепловому воздействию. В зависимости от молекулярной массы и функции выделяют четыре группы БТШ.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-67.jpg" alt=">1. БТШ Предупреждают избыточное (высокомо- стимулирование клетки гормонами в условиях лекулярные)"> 1. БТШ Предупреждают избыточное (высокомо- стимулирование клетки гормонами в условиях лекулярные) стресса - 80 к. Да 2. БТШ – Сопровождают белковые молекулы в 70 к. ДА различные отсеки клетки и к месту образования макромолекулярных комплексов, что предохраняет белки цитоплазмы и ядра от агрегации и денатурации Мигрируют в ядро, связываются с хроматином и ядрышком предохраняют эти белки от мутаций и обеспечивают условия для работы систем репарации. В цитоплазме взаимодействуют с микротрубочками и микрофиламентами и стабилизируют цитоскелет клетки.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-68.jpg" alt=">3. БТШ - 15 -30 к. Да Взаимодействуют с "> 3. БТШ - 15 -30 к. Да Взаимодействуют с хроматином ядра и оказывают действие на осуществление клеточного цикла, повышают устойчивость клетки к некрозу. 4. БТШ - 8, 5 -12 к. Да, Являются рецепторами убиквитины - белки для специфических маркеры апоптоза протеаз. Убиквитация (ubiquitоus - вездесущий) необходима для устранения денатурированных белков или запуска апоптоза.

Клетки - основные структурно-функциональные элементы тканей, органов и организма в целом - для выполнения своих функций поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка (рис. 4-1) либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз).

Гомеостаз (гомеокинез) - динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными

Рис. 4-1. Гомеостаз, адаптация и типовые формы патологии клеток. Слева в овале - границы нормы. Существенное свойство типовых патологических процессов - их обратимость. Если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым (примеры - некроз, апоптоз, дисплазия, опухолевый рост).

факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза - постоянное взаимодействие с различными сигналами и факторами.

Адаптация - приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

Гибель клетки - необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения (некроз).

Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Повреждение Повреждающие факторы

Эффект повреждающего фактора может быть обратимым или необратимым (рис. 4-2).

Природа повреждающего фактора трояка: физическая, химическая или биологическая (включая социальную).

Генез. По происхождению повреждающие факторы подразделяют на экзогенные и эндогенные.

Рис. 4-2. Признаки обратимого и необратимого повреждения. [по 4].

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые, электрический ток);

химические агенты (кислоты, щёлочи, этанол, сильные окислители);

инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

Эндогенные агенты (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов; колебания осмотического давления);

химические факторы (например, накопление или дефицит ионов H+, K+, Ca 2 +, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов - Пг).

Эффекты повреждающих факторов достигаются прямо (первичные факторы повреждения) или опосредованно (при формировании цепи вторичных патологических реакций - вторичные факторы повреждения).

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

К наиболее важным механизмам клеточной альтерации относятся:

♦ расстройства энергетического обеспечения клетки;

♦ повреждение мембран и ферментов;

♦ активация свободнорадикальных и перекисных процессов;

♦ дисбаланс ионов и воды;

♦ нарушения в геноме или экспрессии генов;

♦ расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств - гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и со- пряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ион-

ные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са 2 +-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) - важный механизм повреждения мембран и гибели клетки.

Свободнорадикальные и перекисные реакции - в норме это необходимое звено транспорта электронов, синтеза Пг и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов - СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Этапы СПОЛ: образование активных форм кислорода - генерация свободных радикалов органических и неорганических веществ - продукция перекисей и гидроперекисей липидов.

Активные формы кислорода - ❖ синглетный (Ό 2) ❖ супероксидный радикал (O 2 -)

❖ пероксид водорода (H 2 O 2) ❖ гидроксильный радикал (OH -).

Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

Прооксиданты - легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители - НАДФH 2 , НАДH 2 , липоевая кислота, продукты метаболизма Пг и катехоламинов).

Антиоксиданты - вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды - амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl - (5 ммоль/л), HCO 3 - (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO 4 3- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na + из клеток в обмен на K + . Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся: ❖ изменение соотношения отдельных ионов в цитозоле; ❖ нарушение трансмембранного соотношения ионов; ❖ гипергидратация клеток; ❖ гипогидратация клеток; ❖ нарушения электрогенеза.

Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K + .

Осмотическое набухание и осмотическое сморщивание клеток. Состояние клеток при изменении осмотичности рассмотрено на рис. 4-3.

Гипергидратация. Основная причина гипергидратации повреждён- ных клеток - повышение содержания Na + , а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и

Микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов (рис. 4-3). Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Рис. 4-3. Состояние взвешенных в растворе NaCl эритроцитов. По оси абсцисс: концентрация (С) NaCl (ммоль/л); по оси ординат: объём клеток (V). При концентрации NaCl 154 ммоль/л объём клеток такой же, как и в плазме крови (изотонический раствор NaCl), При увеличении концентрации NaCl (гипертонический раствор NaCl) вода выходит из эритроцитов, и они сморщиваются. При уменьшении концентрации NaCl (гипотонический раствор NaCl) вода входит в эритроциты, и они набухают. При гипотоничности раствора, примерно в 1,4 раза превышающей значение изотонического раствора, происходит разрушение мембраны. .

Нарушения электрогенеза (изменения характеристик мембранного потенциала - МП и потенциалов действия - ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов - существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТОК

Любое повреждение клетки вызывает в ней разной степени выраженности специфические и неспецифические изменения. Специфические изменения развиваются при действии определённого патогенного фактора на различные клетки или в определённых видах клеток при действии разных повреждающих агентов.

Патогенные факторы, вызывающие специфические изменения в различных клетках: осмотическое давление, разобщители, гиперальдостеронемия и др.

Осмотическое давление. Повышение осмотического давления в клетке всегда сопровождается её гипергидратацией, растяжением мембран и нарушением их целостности (феномен «осмотическая деструкция клеток»).

Разобщители. Под влиянием разобщителей окисления и фосфорилирования (например, высших жирных кислот - ВЖК или Ca 2 +) снижается или блокируется сопряжение этих процессов и эффективность биологического окисления.

Гиперальдостеронемия. Повышенное содержание в крови и интерстиции альдостерона ведёт к накоплению в клетках Na+.

Группы клеток, реагирующие специфическими изменениями на действие различных повреждающих агентов:

Мышечные элементы на влияние разнообразных патогенных факторов значительной силы реагируют развитием их контрактуры.

Эритроциты при различных повреждениях подвергаются гемолизу с выходом Hb.

Неспецифические изменения (стереотипные, стандартные) развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов. Примеры: ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и воды, снижение эффективности биологического окисления.

Типовые формы патологии

Основными типовыми формами патологии клеток являются их гипотрофия и атрофия, гипертрофия и дистрофии, дисплазии, метаплазия, а также некроз и апоптоз.

Гипотрофия и атрофия. Гипотрофия характеризуется уменьшением размеров и массы клетки, крайней степенью чего является атрофия. Гипотрофия и атрофия обычно сочетаются с уменьшением количества клеток - гипоплазией. Это приводит к уменьшению объёма органа, истончению кожи и слизистых оболочек. Пример: уменьшение массы и числа клеток в ишемизированной ткани или органе. Гипертрофия. Для гипертрофии характерно увеличение размеров и массы клетки. Нередко это сопровождается увеличением числа клеток (гиперплазией). Выделяют физиологическую и патологическую гипертрофию.

Физиологическая гипертрофия носит адаптивный характер (например, гипертрофия скелетных мышц у спортсменов).

Патологическая гипертрофия имеет (наряду с адаптивным) патологическое значение. Различают рабочую, викарную и нейрогуморальную патологическую гипертрофию, сочетающуюся с ремоделированием органа или ткани.

Рабочая гипертрофия развивается при постоянно повышенной нагрузке (например, патологическая гипертрофия миокарда при гипертонической болезни).

Викарная (заместительная) гипертрофия развивается в одном из парных органов при удалении второго.

Нейрогуморальная гипертрофия развивается при нарушении нейрогуморальной регуляции (например, акромегалия, гинекомастия).

Дистрофии

Клеточные дистрофии - нарушения обмена веществ, сопровождающиеся расстройством функций клеток.

Механизмы дистрофий разнообразны:

❖ синтез аномальных (в норме не встречающихся в клетке) веществ (например, белково-полисахаридного комплекса амилоида);

❖ избыточное превращение одних соединений в другие (например, углеводов в жиры при сахарном диабете);

❖ декомпозиция (фанероз): распад субклеточных структур и веществ (например, белково-липидных комплексов мембран при хронической гипоксии);

❖ инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями (например, липопротеинами низкой плотности - ЛПНП и Ca 2 + интимы артерий при атеросклерозе).

Классификация. Основным критерием классификации клеточных дистрофий является преимущественное нарушение метаболизма отдельных классов веществ. В связи с этим критерием различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы (пигментные дистрофии), углеводные и минеральные дистрофии. В отдельную группу выделяют тезаурисмозы (болезни накопления).

Диспротеинозы. Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков. Выделяют зернистую, гиалиново-капельную и гидропическую дистрофии.

Липидозы. Для жировых дистрофий характерно увеличение содержания внутриклеточных липидов и их перераспределение в тканях и органах. Выделяют первичные и вторичные липидозы.

Первичные липидозы наблюдаются, как правило, при генетически обусловленных ферментопатиях (например, ганглиозидозы, цереброзидозы, сфинголипидозы).

Вторичные липидозы развиваются в результате воздействия различных патогенных факторов, таких как гипоксия, тяжёлые инфекции, системные заболевания, отравления (в том числе некоторыми ЛС - цитостатиками, антибиотиками, барбитуратами).

Углеводные дистрофии. Характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы; например, при циррозе печени или хронических гепатитах) и накопление избытка углеводов (например, гликогеноз фон Гирке - нефромегалический синдром - гликогенная инфильтрация клеток почек).

Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

Диспигментозы. Пигментные дистрофии классифицируют в зависимости от их происхождения (первичные и вторичные), механизма развития, структуры пигмента, проявлений и распро- странённости (местные и системные). Примеры:

Частицы сажи, угля и т.п. накапливаются в макрофагах лёгких в результате пребывания в загрязнённой атмосфере. В связи с этим ткань лёгких приобретает тёмно-серый цвет.

Гемосидерин. При гемолизе эритроцитов происходят освобождение Hb, его захват макрофагами печени, селезёнки, красного костного мозга и превращение в пигмент бурого цвета - гемосидерин.

Минеральные дистрофии. Из минеральных дистрофий наибольшее клиническое значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

Тезаурисмозы (от греч. thesauros - сокровищница) - болезни накопления промежуточных продуктов обмена углеводов, гликозаминогликанов, липидов и белков. Большинство тезаурисмозов - результат наследственных ферментопатий. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). В отдельные группы выделяют болезни накопления лизосомные и пероксисомные. Примеры:

Тэя-Сакса болезнь - врождённая недостаточность лизосомальной гексозаминидазы А нейронов - характеризуется накоплением ганглиозидов в цитоплазме нервных клеток.

Цереброгепаторенальный синдром (синдром Целлвегера) - типичная лизосомная болезнь накопления, развивающаяся вследствие дефектов генов, кодирующих белки пероксисом (в плазме крови и тканях увеличено содержание длинноцепочечных жирных кислот).

Болезнь Гоше - накопление в фагоцитирующих клетках селезён- ки и красного костного мозга избытка глюкоцереброзидов.

Гликогенозы - накопление в цитоплазме клеток внутренних органов разных форм аномального гликогена.

Метаплазия

Метаплазия - замещение клеток, свойственных данному органу, нормальными клетками другого типа. Примеры:

♦ Хронические воспалительные заболевания лёгких, дефицит витамина А, курение приводят к появлению среди клеток мерцательного эпителия бронхов островков многослойного плоского эпителия.

♦ При хроническом цервиците возможно замещение однослойного цилиндрического эпителия многослойным плоским.

♦ В результате забрасывания (рефлюкса) кислого содержимого желудка многослойный плоский эпителий слизистой оболочки пищевода замещается однослойным эпителием, характерным для тонкой кишки (пищевод Баррета).

Метаплазию рассматривают как пограничное состояние (на грани нормального). В ряде случаев участки метаплазии становятся диспластическими, что чревато их опухолевой трансформацией. Дисплазии - нарушения дифференцировки клеток, сопровождающиеся стойкими изменениями их структуры, метаболизма и функции (клеточный атипизм). В отличие от метаплазий, для дисплазий характерно появление признаков клеточного атипизма при сохранной структуре и архитектуре ткани. Дисплазии предшествуют опухолевому росту (предопухолевые состояния).

ГИБЕЛЬ КЛЕТКИ

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток - некроз (гибель клетки вследствие её значительного - летального - повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз

Некроз (от греч. necros - мёртвый) - патологическая гибель клеток в результате действия на них повреждающих факторов.

Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов). О необратимости повреждения клетки свидетельствуют, как правило, разрывы плазмолеммы и выраженные изменения структуры ядра (кариорексис - разрывы

ядерной мембраны, фрагментация ядра; кариолизис - распыление хроматина; кариопикноз - сморщивание содержимого ядра).

Паранекроз и некробиоз. Некрозу предшествуют паранекроз (сходные с некротическими, но ещё обратимые изменения метаболизма и структуры клеток) и некробиоз (совокупность необратимых дистрофических изменений, ведущих к некрозу).

Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизису). Если разложение осуществляется при помощи лизосомных ферментов и свободных радикалов погибших клеток, процесс называется аутолизом.

Гетеролизис. Разрушение повреждённых и погибших клеток при участии других (неповреждённых) клеток (мигрирующих в зону альтерации фагоцитов, а также попавших в неё микробов) обозначают как гетеролизис.

Этиология и патогенез некроза. Выделяют несколько основных этиологических факторов некроза - травматические, токсические, трофоневротические, циркуляторные и иммуногенные. Развивающиеся в связи с действием этих факторов ишемия, венозная гиперемия и лимфостаз сопровождаются гипоксией и активацией механизмов повреждения клеток, что приводит, в конце концов, к некрозу.

Травматический некроз. Является результатом прямого действия на ткань физических (механических, температурных, вибрационных, радиационных) и др. факторов.

Токсический некроз. Развивается при действии на ткани токсинов, чаще микробных.

Трофоневротический некроз развивается при нарушении кровоснабжения или иннервации тканей при поражении периферической нервной системы. Примером трофоневротического некроза могут служить пролежни.

Иммуногенный некроз - результат цитолиза в ходе аутоагрессивных иммунных и аллергических реакций. Примером может служить фибриноидный некроз при феномене Артюса. Цитолиз с участием T-лимфоцитов-киллеров, NK-клеток и фагоцитов приводит к некрозу участков печени при хроническом гепатите.

Циркуляторный некроз. Вызван недостаточностью циркуляции крови в кровеносных и лимфатических сосудах в результате их тромбоза, эмболии, длительного спазма, сдавления извне. Недостаточная циркуляция в ткани вызывает её ишемию, гипоксию и некроз.

Апоптоз

Апоптоз (от греч. apoptosis - опадание листьев) - программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов, а также наблюдается при адаптации клетки к факторам среды. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток. Апоптоз - энергозависимый процесс. Нарушения или блокада апоптоза может стать причиной патологии (роста опухолей, реакций иммунной аутоагрессии, иммунодефицитов и др.).

Примеры апоптоза

Запрограммированная гибель клеток в ходе эмбрионального развития, гистогенеза и морфогенеза органов. Пример: гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

Смерть клеток, выполнивших свою функцию (например, иммунокомпетентных клеток по завершении иммунного ответа или эозинофилов после дегрануляции).

Ликвидация аутоагрессивных T-лимфоцитов на определённых этапах развития тимуса или после завершения иммунного ответа.

Старение сопровождается гормонозависимой инволюцией и апоптозом клеток эндометрия, атрезией фолликулов яичников у женщин в менопаузе, а также - ткани простаты и яичек у пожилых мужчин.

Трансфекция - внедрение в клетку фрагмента нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе) нередко вызывает её апоптоз.

Опухолевый рост закономерно сопровождается апоптозом большого числа трансформированных клеток.

Механизм апоптоза

В ходе апоптоза выделяют четыре стадии - инициация, программирование, реализации программы, удаление погибшей клетки. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Трансмембранные сигналы подразделяют на «отрицательные», «положительные» и смешанные. ❖ «Отрицательный» сигнал означает прекращение действия на клетку либо отсутствие в ткани факторов роста или цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. ❖ «Положительный» сигнал подразумевает воздействие на клетку агента, запускающего программу апоптоза. Например, связывание ФНО с его мембранным рецептором CD95 активирует программу смерти клетки. ❖ Смешанный сигнал - комбинация сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, стимулированные митогеном, но не контактировавшие с чужеродным Аг; погибают и лимфоциты, на которые воз-

действовал Аг, но они не получили других сигналов (например, митогенного).

♦ Среди внутриклеточных стимулов апоптоза наибольшее значение имеют: ❖ избыток H + и свободных радикалов; ❖ повышенная температура; ❖ внутриклеточные вирусы и ❖ гормоны, обеспечивающие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Стадия программирования (контроля и интеграции процессов апоптоза). Выделяют два варианта реализации стадии программирования: прямая активация эффекторных каспаз и эндонуклеаз (минуя геном клетки) и опосредованная их активация через экспрессию определённых генов.

Прямая передача сигнала. Осуществляется через адапторные белки, гранзимы и цитохром С. Прямая передача сигнала наблюдается в безъядерных клетках (например, эритроцитах).

Опосредованная через геном передача сигнала. На этой стадии специализированные белки либо блокируют потенциально летальный сигнал, либо реализуют сигнал к апоптозу путём активации исполнительной программы.

Белки-ингибиторы апоптоза (продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, в связи с чем уменьшается вероятность выхода в цитозоль одного из пусковых факторов апоптоза - цитохрома C).

Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Bax, антионкогенами Rb или p 53) активируют эффекторные цистеиновые протеазы (каспазы и эндонуклеазы).

Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и эндонуклеаз. Непосредственными исполнителями «умертвления» клетки являются Ca 2 +,Mg 2 +-зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы - апоптозные тельца.

Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца (гетеролизис). В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

НЕКРОПТОЗ

В последние годы описан еще один вариант смерти клеток, отличающийся как от апоптоза, так и от некроза. Он обозначен как некроптоз. Программа некроптоза может быть стимулирована, подобно апоптозу, лигандами клеточных рецепторов из семейства фактора некроза опухолей (ФНОα). Однако гибель клетки происходит без активации протеаз, относящихся к каспазам (некроптоз развивается при полном подавлении активности каспаз).

Механизм разрушения клетки при некроптозе в большей мере подобен аутолизу. Считают, что некроптоз является одним из своеобразных механизмов гибели нервных клеток при инсультах.

Адаптация клеток

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТОК К ПОВРЕЖДЕНИЮ

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреж- дённых клетках. К этим механизмам относят: ❖ компенсацию нарушений энергетического обеспечения клетки; ❖ защиту мембран и ферментов клетки; ❖ уменьшение или устранение дисбаланса ионов и воды в клетке; ❖ устранение дефектов реализации генетической программы клетки;

Компенсацию расстройств регуляции внутриклеточных процессов;

Снижение функциональной активности клеток; ❖ действие белков теплового шока; ❖ регенерацию; ❖ гипертрофию; ❖ гиперплазию.

Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии

патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются непов- реждёнными клетками в процессе их взаимодействия с повреждёнными.

Механизмы взаимодействия клеток:

♦ обмен метаболитами, местными цитокинами и ионами; ❖ реализация реакций системы ИБН;

♦ изменения лимфо- и кровообращения;

♦ эндокринные влияния;

♦ нервные воздействия.

Примеры

Гипоксия. Уменьшение содержания кислорода в крови и клетках стимулирует активность нейронов дыхательного центра, деятельность сердечно-сосудистой системы, выброс эритроцитов из костного мозга. В результате увеличивается объём альвеолярной вентиляции, перфузия тканей кровью, число эритроцитов в периферической крови, что уменьшает или ликвидирует недостаток кислорода и активирует обмен веществ в клетках.

Гипогликемия. Повреждение клеток в условиях гипогликемии может быть уменьшено в результате инкреции глюкагона, адреналина, глюкокортикоидов, соматотропного гормона (СТГ), способствующих повышению уровня глюкозы в плазме крови и транспорта глюкозы в клетки.

Ишемия. Снижение кровоснабжения артериальной кровью какого-либо участка ткани, как правило, сопровождается увеличением притока крови по коллатеральным (обходным) сосудам, что восстанавливает доставку к клеткам кислорода и субстратов метаболизма.

Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

♦ по целевому назначению на лечебные и профилактические;

♦ по природе на медикаментозные, немедикаментозные и комбинированные;

♦ по направленности на этиотропные, патогенетические и саногенетические.

Профилактические и лечебные мероприятия

Немедикаментозные агенты. Немедикаментозные средства применяют с целью профилактики повреждения клетки. Эти средства повышают устойчивость клеток к ряду патогенных агентов.

Пример. Тренировка организма (по определённой схеме) умеренной гипоксией, стрессорными факторами, физическими нагрузками и охлаждением увеличивает резистентность к значительной гипоксии, ишемии, холоду, инфекционным и другим агентам. В основе увеличения резистентности клеток при тренировке лежит повышение надёжности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций, механизмов синтеза белков и репарации ДНК, процессов формирования субклеточных структур и других изменений.

Медикаментозные средства. Лекарственные средства (ЛС) применяют, в основном, для активации адаптивных механизмов уже после воздействия патогенного агента. Большинство ЛС применяют с целью этиотропной или патогенетической терапии.

К основным воздействиям, имеющим целью уменьшить силу патогенного действия на клетки или блокировать механизм развития патологического процесса, относят: снижение степени или устранение нарушений энергетического обеспечения клеток; коррекцию и защиту механизмов трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращение повреждения генетического аппарата клетки; ? коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

Комбинированные воздействия дают наибольший эффект (как лечебный, так и профилактический).

Общие принципы терапии и профилактики

К общим принципам терапии и профилактики относят этиотропный, патогенетический и саногенетический принципы.

Этиотропные воздействия направлены на предотвращение действия (профилактика) или на устранение, прекращение, уменьшение силы или длительности влияния патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия (лечение).

Саногенетические мероприятия имеют целью активацию адаптивных механизмов (компенсации, защиты, восстановления и приспособления клеток) к изменившимся условиям, что предотвращает развитие заболевания (профилактика) или ускоряет выздоровление организма (лечение).

Патогенетические воздействия направлены на разрыв звеньев патогенеза путём защиты механизмов энергоснабжения клеток, коррекции трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращения действия факторов, вызывающих изменения в генетическом аппарате клеток.

На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят:

    расстройство процессов энергетического обеспечения клеток;

    повреждение мембран и ферментных систем;

    дисбаланс ионов и жидкости;

    нарушение генетической программы и/или ее реализации;

    расстройство механизмов регуляции функции клеток.

1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии.

Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль. Креатинфосфокиназа эффекторных клеточных структур транспортиует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессе жизнедеятельности клетки. Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах.

Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.).

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов.

а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты.

Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН 2 , НАДН 2 , липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О 2 - .), гидроксильного радикала (ОН.), перекиси водорода (Н 2 О 2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер.

Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы.

Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь, обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных).

В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

в). Внедрение амфифильных соединений в липидную фазу мембран.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия.

Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга.

б). Гипер- и дегидратацияклеток.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов (например, онкогенов), подавление активности жизненноважных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки).

Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

    на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

    на уровне клеточных т.н. “вторых посредников” (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующих в ответ на действие “первых посредников” – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

    на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.