Общая характеристика альдегидов. Альдегиды и кетоны

Строение альдегидов и кетонов

Альдегиды - органические вещества, молеку­лы которых содержат карбонильную группу :

соединенную с атомом водорода и углеводородным радикалом. Общая формула альдегидов имеет вид:

В простейшем альдегиде - роль углеводородного радикала играет другой атом водорода:


Формальдегид

Карбонильную группу, связанную с атомом во­дорода, часто называют альдегидной :

Кетоны - органические вещества, в молеку­лах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кето-группой .

В простейшем кетоне - ацетоне - карбониль­ная группа связана с двумя метильными радика­лами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного ра­дикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды :


В соответствии с номенклатурой ИЮПАК на­звания предельных альдегидов образуются от на­звания алкана с тем же числом атомов углерода с молекуле с помощью суффикса -аль . Например:


Нумерацию атомов углерода главной цепи на­чинают с атома углерода альдегидной группы. По­этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее поло­жение нет необходимости.

Наряду с систематической номенклатурой ис­пользуют и тривиальные названия широко приме­няемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соот­ветствующих альдегидам.

Для названия кетонов по систематической но­менклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углеро­да карбонильной группы (нумерацию следует на­чинать от ближайшего к кетогруппе конца цепи).

Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродно­го скелета , которая возможна с бутаналя, а для кетонов - также и изомерия положения карбо­нильной группы . Кроме этого, для них характер­на и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов и кетонов

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислоро­да по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электрон­ной плотности π-связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода . Низшие члены ряда альдегидов и ке­тонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температу­ры кипения ниже, чем у соответствующих спир­тов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей.

Низшие альдегиды име­ют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, непри­ятный запах; высшие альдегиды и кетоны обла­дают цветочными запахами и применяются в пар­фюмерии.

Наличие альдегидной группы в молекуле опре­деляет характерные свойства альдегидов.

Реакции восстановления.

1. Присоединение водорода к молекулам альде­гидов происходит по двойной связи в карбониль­ной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

2. Гидрирование альдегидов - реакция восста­новления, при которой понижается степень окис­ления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кисло­ты. Схематично этот процесс можно представить так:

1. Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

2. Окисление слабыми окислителями (аммиач­ный раствор оксида серебра). В упрощенном виде этот процесс можно выразить уравнением реак­ции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводит­ся реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее ши­роко используют для изготовления зеркал, сереб­рения украшений и елочных игрушек.

3. Окисление свежеосажденным гидроксидом меди (II). Окисляя альдегид, Cu 2+ восстанавливает­ся до Cu + . Образующийся в ходе реакции гидрок­сид меди (I) CuOH сразу разлагается на оксид ме­ди (I) красного цвета и воду.

Эта реакция, так же как и реакция «серебряно­го зеркала », используется для обнаружения альде­гидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Химические свойства альдегидов и кислот - конспект

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид HCHO) - бесцветный газ с резким запахом и тем­пературой кипения -21 °С, хорошо растворим в во­де. Формальдегид ядовит! Раствор формальдегида в воде (40 %) называют фор­малином и применяют для формальдегид и уксусной дезинфекции. В сельском хозяйстве формалин использу­ют для протравливания семян, в кожевенной промышленности - для обра­ботки кож. Формальдегид используют для получе­ния уротропина - лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применя­ют в качестве горючего (сухой спирт). Большое ко­личество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид CH 3 CHO) - жидкость с резким, неприятным за­пахом и температурой кипения 21 °С, хорошо рас­творим в воде. Из уксусного альдегида в промыш­ленных масштабах получают уксусную кислоту и ряд других веществ, он используется для произ­водства различных пластмасс и ацетатного волок­на. Уксусный альдегид ядовит !

Группа атомов -

Называется карбоксиль­ной группой , или карбоксилом.

Органические кислоты, содержащие в молеку­ле одну карбоксильную группу, являются одноос­новными .

Общая формула этих кислот RCOOH, например:

Карбоновые кислоты, содержащие две кар­боксильные группы, называются двухосновными . К ним относятся, например, щавелевая и янтар­ная кислоты:

Существуют и многоосновные карбоновые кис­лоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного ра­дикала карбоновые кислоты делятся на предель­ные, непредельные, ароматические .

Предельными , или насыщенными, карбоновы­ми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат π-связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, не­предельным углеводородным радикалом, например, в молекулах акриловой (пропеновой)

СН 2 =СН-СООН

или олеиновой

СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН

и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической , так как содержит в моле­куле ароматическое (бензольное) кольцо:

Название карбоновой кислоты образуется от на­звания соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлени­ем суффикса -ов , окончания -ая и слова кислота . Нумерация атомов углерода начинается с карбок­сильной группы . Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложив­шиеся, или тривиальные, названия.

Состав предельных одноосновных карбоновых кислот будет выражаться общей формулой С n Н 2n O 2 , или С n Н 2n+1 СOOН , или RСООН .

Физические свойства карбоновых кислот

Низшие кислоты, т. е. кислоты с относитель­но небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидко­сти с характерным резким запахом (например, за­пах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жид­кости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры ки­пения предельных одноосновных карбоновых кис­лот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относитель­ной молекулярной массы. Так, температура кипе­ния муравьиной кислоты равна 100,8 °С, уксус­ной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молеку­лярную массу (М r (НСООН) = 46), при обычных уcловиях является жидкостью с температурой кипе­ния 100,8 °С. В то же время бутан (M r (C 4 H 10) = 58) в тех же условиях газообразен и имеет температу­ру кипения -0,5 °С. Это несоответствие темпера­тур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот , в которых две молекулы кислоты связаны двумя водородными связями :

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоно­вых кислот содержат полярную группу атомов - карбоксил

И практически неполярный углеводородный радикал . Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличени­ем числа атомов в углеводородном радикале рас­творимость карбоновых кислот снижается.

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их - слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами с образованием сложных эфиров - реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода - ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами) - в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства карбоновый кислот - конспект

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота HCOOH - жидкость с резким запахом и темпе­ратурой кипения 100,8 °C, хорошо растворима в воде.

Муравьиная кислота ядови­та, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая мура­вьями, содержит эту кислоту.

Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленностях, медицине. Она ис­пользуется при крашении тканей и бумаги.

Уксусная (этановая) кислота CH 3 COOH - бес­цветная жидкость с характерным резким запа­хом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5 % -й раствор) и уксусной эссенции (70-80 %-й раствор) и широ­ко используются в пищевой промышленности. Ук­сусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокра­сочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают ве­щества, используемые для борьбы с сорняками, - гербициды. Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она продукт окис­ления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших пре­дельных одноосновных кислот являются пальми­тиновая C 15 H 31 COOH и стеариновая C 17 H 35 COOH кислоты . В отличие от низших кислот эти веще­ства твердые, плохо растворимы в воде.

Однако их соли - стеараты и пальмитаты - хо­рошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота C 17 H 33 COOH, или CH 3 - (CH 2) 7 - CH = CH -(CH 2) 7 COOH. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота HOOC-COOH, соли которой встре­чаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяет­ся в воде. Она применяется при полировке ме­таллов, в деревообрабатывающей и кожевенной промышленностях.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Расстановка ударений: АЛЬДЕГИ`ДЫ

АЛЬДЕГИДЫ - класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная к-та - уксусный А.). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические А. и др. Если радикалом является остаток спирта, карбоновой к-ты и пр., образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие хим. свойствами, присущими А. и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с А. реакции. Один из простейших А. - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения А. из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:


Эта реакция применяется при синтетическом производстве уксусной к-ты. Ароматические А. обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и хим. свойства А. Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из А. - муравьиный, или формальдегид


альдегидная группировка к-рого связана с водородом, является газом; низшие А. (напр., ацетальдегид) - жидкости с резким запахом; высшие А. - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода А. относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций А. характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

А. легко полимеризуются и конденсируются (см. Алъдоаьная конденсация ); при обработке А. щелочами или кислотами получаются альдоли, напр.:

При отщеплении воды альдоль превращается в кротоновый альдегид


способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биол. субстратов (крови, мочи и т. д.) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и пр., но не могут считаться специфическими.

А. играют большую роль в биол. процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в А. с последующим их окислением в жирные кислоты.

Радикалы А. высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный А. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных А. (анисовый, коричный, ванилин и др.).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной к-ты с образованием уксусного А., превращающегося путем восстановления в этиловый спирт.

А. широко используются в синтезе многих органических соединений. В мед. практике применяются как непосредственно А. (см. Формалин, Паральдегид, Цитраль ), так и синтетические производные, получаемые из А., напр, уротропин (см. Гексаметилентетрамин ), хлоралгидрат (см.) и др.

См. также Муравьиный альдегид. Уксусный альдегид .

Альдегиды как профессиональные вредности . А. широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется гл. обр. в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и т. д.; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t ° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и т. д.). Более подробно - см. статьи, посвященные отдельным А.

Все А., особенно низшие, обладают выраженным токсическим действием.

А. раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия А. являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физ.-хим. свойств А.: низшие А. (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть А. падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных А. сильнее, чем у предельных.

Механизм токсического действия А. связан с высокой реакционной способностью карбонильной группы А., к-рая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции ц. н. с., дистрофические изменения внутренних органов и т. д. Кроме того, попадая в организм, А. подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами А., а продукты их превращений. А. медленно выводятся из организма, способны кумулировать, чем объясняется развитие хрон. отравлений, основные проявления к-рых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлонии альдегидами . Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика . Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция ). Использование индивидуальных средств защиты, напр. фильтрующего противогаза марки «А» (см. Противогазы ), спецодежды (см. Одежда ) и т. д.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов . Все А. суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой к-той. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

См. также Отравления, Яды промышленные .

Библиогр.: Бауер К. Г . Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н . и Несмеянов Н. А . Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф . и Латыпова З. В . Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С ., Гинзбург С. Л . и Xализова О. Д . Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь , Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С . и Сергеева Т. И . Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В . Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М . К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н . а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F . u. Onnen K . Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H . a. Touraine R. G . Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E . A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

Альдегиды- класс органических соединений, содержащих карбонильную группу -СОННазвание альдегидов происходит от названия углеводородных радикалов с добавлением суффикса -аль Общая формула предельных альдегидов СnH2n+1COH. Номенклатура и изомерия

Номенклатура этих двух групп соединений строится по-разному . Тривиальные названия альдегидов связывают их с тривиальными названиями кислот, в которые они переходят при окислении

Из кетонов лишь немногие имеют тривиальные названия (например, ацетон). Для них широко используется радикально-функциональная номенклатура , в которой названия кетонов даются с использованием названий радикалов, связанных с карбонильной группой. По номенклатуре ИЮПАК названия альдегидов производятся от названия углеводорода с тем же числом атомов углерода путём добавления окончания –аль .Длякетонов эта номенклатура требует окончания –он . Цифрой обозначается положение функциональной группы в цепи кетона.

Соединение Названия по триви-альной и радикально-функциональной номенклатурам Названия по номенклатуре ИЮПАК
муравьиный альдегид; формальдегид метаналь
уксусный альдегид; ацетальдегид этаналь
пропионовый альдегид пропиональ
масляный альдегид бутаналь
изомасляный альдегид метилпропаналь
валериановый альдегид пентаналь
изовалериановый альдегид 3-метилбутаналь
ацетон; диметилкетон пропанон
метилэтилкетон бутанон
метилпропилкетон пентанон-2
метилизопропилкетон 3-метилбутанон-2

Изомерия альдегидов и кетонов полностью отражается номенклатурой и комментарий не требует. Альдегиды и кетоны с одинаковым числом атомов углерода являются изомерами . Например:

Способы получения – Окисление или каталитическое дегидрирование первичных спиртов до альдегидов, вторичных – до кетонов . Реакции эти уже упоминались при рассмотрении химических свойств спиртов.

– Пиролиз кальциевых или бариевых солей карбоновых кислот, одна из которых – соль муравьиной кислоты, даёт альдегиды.

– Гидролиз геминальных (заместители у одного углерода) дигалогеналканов

– Гидратация ацетилена и его гомологов протекает в присутствии сульфата ртути (реакция Кучерова) или над гетерогенным катализатором

Физические свойства. Муравьиный альдегид – газ. Остальные низшие альдегиды и кетоны – жидкости, плохо растворимые в воде. Альдегиды имеют удушливый запах. Кетоны пахнут обычно приятно. 1. Р. Окисления.Альдегиды легко окисляются до карбоновых кислот. Окислителями могут служить гидроксид меди (II), оксид серебра, кислород воздуха:

Ароматические альдегиды окисляются труднее алифатических. Кетоны, как было сказано выше, окисляются труднее альдегидов. Окисление кетонов проводится в жестких условиях, в присутствии сильных окислителей. Образуются в результате смеси карбоновых кислот. При этом образуется металлическое серебро. Раствор оксида серебра готовят непосредственно перед опытом:

Альдегиды также восстанавливают свежеприготовленный аммиачный раствор гидроксида меди (II), обладающий светло-голубой окраской (реактив Фелинга), до желтого гидроксида меди (I), который при нагревании разлагается с выделением ярко-красного осадка оксида меди (I). СН3-СН=О + 2Cu(ОН)2 - СН3СООН+2CuОН+Н2О 2CuOH->Cu2O+H2O

2. Р. Присоединения. Гидрирование - присоединение водорода.Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt,Ni

Альдегиды и кетоны относятся к карбонильным органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

Функциональная группа –СН=О называется альдегидной. Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: R 2 C=O, R–CO–R" или

Модели простейших карбонильных соединений

Название

Формальдегид (метаналь)

H 2 C=O

Ацетальдегид (этаналь)

СH 3 -CH=O

Ацетон (пропанон)

(СH 3 ) 2 C=O

Номенклатура альдегидов и кетонов.

Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Формула

Название

систематическое

тривиальное

H 2 C=O

метаналь

муравьиный альдегид (формальдегид)

CH 3 CH=O

этаналь

уксусный альдегид (ацетальдегид)

(CH 3 ) 2 CHCH=O

2-метил-пропаналь

изомасляный альдегид

CH 3 CH=CHCH=O

бутен-2-аль

кротоновый альдегид

Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон . Например: CH 3 –CO–CH 3 - диметилкетон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - метилпропилкетон. В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК). Примеры: CH 3 –CO–CH 3 - пропанон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - пентанон- 2; CH 2 =CH–CH 2 –CO–CH 3 - пентен-4-он- 2.

Изомерия альдегидов и кетонов .

Для альдегидов и кетонов характерна структурная изомерия .

Изомерия альдегидов :

изомерия углеродного скелета, начиная с С 4

межклассовая изомерия с кетонами, начиная с С 3

циклическими оксидами (с С 2)

непредельными спиртами и простыми эфирами (с С 3)

Изомерия кетонов : углеродного скелета (c C 5)

положения карбонильной группы (c C 5)

межклассовая изомерия (аналогично альдегидам).

Строение карбонильной группы C=O.

 Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

 Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Реакционные центры альдегидов и кетонов

sp 2 -Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.

Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы

дефицитного атома углерода карбонильной группы по σ-связям представлено на схеме 5.1.

Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:

Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;

Основный центр - атом кислорода - обусловливает возможность атаки протоном;

СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.

В целом альдегиды и кетоны обладают высокой реакционной способностью.

Класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная кислота - уксусный альдегид). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические альдегиды и другие. Если радикалом является остаток спирта, карбоновой кислоты и прочее, образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие химическими свойствами, присущими альдегидам и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с альдегидами реакции. Один из простейших альдегидов - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения альдегида из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:

Эта реакция применяется при синтетическом производстве уксусной кислоты. Ароматические альдегиды обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и химические свойства альдегидов Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из альдегидов - муравьиный, или формальдегид

альдегидная группировка которого связана с водородом, является газом; низшие альдегиды (например, ацетальдегид) - жидкости с резким запахом; высшие альдегиды - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода альдегиды относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций альдегидов характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

Альдегиды легко полимеризуются и конденсируются (см. Альдольная конденсация); при обработке альдегидов щелочами или кислотами получаются альдоли, например:

При отщеплении воды альдоль превращается в кротоновый альдегид

способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биологических субстратов (крови, мочи и так далее) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и прочие, но не могут считаться специфическими.

Альдегиды играют большую роль в биологических процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в альдегиды с последующим их окислением в жирные кислоты.

Радикалы альдегиды высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный альдегид. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных альдегидов. (анисовый, коричный, ванилин и другие).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида, превращающегося путем восстановления в этиловый спирт.

Альдегиды широко используются в синтезе многих органических соединений. В медицинской практике применяются как непосредственно альдегиды (см. Формалин , Паральдегид , Цитраль), так и синтетические производные, получаемые из альдегидов, например, уротропин (см. Гексаметилентетрамин), хлоралгидрат (см.) и другие.

Альдегиды как профессиональные вредности

Аьдегиды широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется главным образом в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и так далее; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и так далее). Более подробно - смотри статьи, посвященные отдельным альдегидам.

Все альдегиды, особенно низшие, обладают выраженным токсическим действием.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия альдегиды являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физико-химических свойств альдегидов: низшие альдегиды (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть альдегидов падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных альдегидов сильнее, чем у предельных.

Механизм токсического действия альдегидов связан с высокой реакционной способностью карбонильной группы альдегидов, которая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции центральной нервной системы, дистрофические изменения внутренних органов и так далее. Кроме того, попадая в организм, альдегиды подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами альдегиды, а продукты их превращений. Альдегиды медленно выводятся из организма, способны кумулировать, чем объясняется развитие хронических отравлений, основные проявления которых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлении альдегидами. Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика

Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция). Использование индивидуальных средств защиты, например фильтрующего противогаза марки «А» (см. Противогазы), спецодежды (см. Одежда) и так далее.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов. Все альдегиды суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой кислотой. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

Библиография

Бауер К. Г. Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф. и Латыпова З. В. Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С., Гинзбург С. Л. и Xализова О. Д. Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь, Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С. и Сергеева Т. И. Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В. Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М. К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н. а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F. u. Onnen K. Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H. a. Touraine R. G. Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E. A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).