Лечение препаратом как создать новую тему. Как создать перспективный препарат? Ограничения применения компьютерных методов

Трудно найти человека, который в какой-то период жизни не принимал бы лекарство. И в то же время вряд ли многие задумываются над тем, что в лекарстве, как в фокусе линзы, сосредоточиваются достижения фундаментальных наук – органической и неорганической химии, физиологии, биохимии, биофизики, несомненно, фармакологии и комплекса фармацевтических наук. Достижения этих фундаментальных дисциплин благодаря науке о лекарственных веществах входят в практику и служат на благо человека. Поэтому введение в фармакологию, которому и посвящена статья, не только имеет познавательное значение, но и помогает более целенаправленно изучать биологические и химические дисциплины в школе.

Путь лекарства от лаборатории до больного

Создание лекарства начинается обычно в лаборатории химика –специалиста по органическому синтезу или в лаборатории фитохимика. Первый создает пока еще не исследованные соединения, второй выделяет из растений либо индивидуальные химические соединения, либо группу близких по структуре веществ. Затем созданные или выделенные вещества передаются фармакологу, определяющему, обладают ли эти вещества нужным эффектом. Предположим, что фармаколог ищет вещества, обладающие гипотензивным эффектом, т.е. понижающие артериальное давление. Он может идти двумя путями . Первый путь носит название скрининг . При этом фармакологу часто неизвестно даже предположительно, какой химической структурой должно обладать гипотензивное средство, и он испытывает в опытах на животных одно вещество за другим, отсеивая неэффективные (скрининг-сито). Это весьма трудоемкий метод и часто малоэффективный, однако иногда единственно возможный, особенно когда речь идет о разработке новых, неизвестных, групп лекарственных веществ. Скрининг используется для поиска противоопухолевых средств. Впервые он был применен в начале столетия П.Эрлихом для получения противосифилитических средств на основе органических соединений мышьяка.

Чаще используется метод направленного синтеза . Исследователь постепенно накапливает материал, показывающий, какие химические радикалы или иные структуры ответственны за тот или иной вид действия. Одна из основных проблем фармакологии – изучение закономерностей «структура–действие». Все больше накапливается данных, на основании которых составляются программы для компьютеров. Уже с большей долей вероятности можно предсказать характер действия планируемого к синтезу и последующему изучению соединения. Всегда решающим остается эксперимент, но знание общих закономерностей «структура–действие» сокращает путь к успеху.

Итак, предположим, что найдено эффективное средство, способное вызывать гипотензивный эффект, но на этом работа фармаколога не заканчивается. Он должен выяснить, не обладает ли химическое соединение токсическими свойствами, способными проявиться при применении его в качестве лекарственного средства. Фармаколог определяет обычно острую токсичность, т.е. дозу, способную вызвать смерть 50% экспериментальных животных (ЛД 50 – летальная доза); чем меньше эта доза, тем токсичнее вещество. Лекарством может стать только то вещество, терапевтическая (лечебная) доза которого значительно (часто в 20 и более раз) меньше ЛД 50 . Диапазон доз от минимальной эффективной до минимальной токсической свидетельствует о широте терапевтического действия лекарств.

Фармаколог определяет и возможность побочных эффектов при длительном введении лекарства в терапевтических дозах. Проводится определение субхронической токсичности: препарат вводят длительное время – часто до 6 месяцев и более. При этом определяют функции всех систем организма, биохимические показатели крови, проводят патогистологическое исследование органов подопытных животных после окончания введения препарата. Это исследование позволяет судить, не нарушает ли лекарственный препарат функции органов и тканей организма при длительном введении, т.е. безопасна ли длительная терапия этим соединением. Фармаколог определяет и другие возможные токсические эффекты препарата: его влияние на репродуктивную функцию (способность производить потомство), эмбриотоксическое действие (возможность влиять на эмбрион), тератогенное действие (способность вызывать уродства плода), мутагенный эффект. При помощи специальных проб изучают влияние препарата на иммунитет, возможность канцерогенного действия препарата, его аллергенную активность и др.

Одновременно работают и специалисты-провизоры, определяющие наиболее рациональную лекарственную форму. На этом заканчивается этап доклинического исследования препарата. В каждой стране есть официальное учреждение, разрешающее клиническое исследование препарата и последующее использование его в качестве лекарственного средства. В России разрешение на клиническое исследование препарата дает Фармакологический комитет Министерства здравоохранения РФ.

Перед клиницистом, получившим на апробацию лекарственный препарат, стоят те же задачи, что и перед фармакологом, т.е. оценка лечебного эффекта препарата и выяснение возможности побочного действия при его применении. Однако у клинициста возникают трудности, с которыми не сталкивается фармаколог-экспериментатор: сознание человека, принимающего лекарство, может изменить оценку действия лекарства. При некоторых заболеваниях возможно улучшение состояния больного под влиянием внушения и авторитета врача, а также больничного режима, диеты, оказывающих положительное влияние. Поэтому необходимо различать истинный эффект лекарства от влияния сопутствующих лечению факторов. Для этого применяют пробу плацебо (пустышка). Предположим, что одной группе больных, разумеется, не требующих экстренного эффективного лечения, назначают таблетки, содержащие лекарство, а другой группе – аналогичные по виду таблетки, но не содержащие лекарства, – плацебо. Если при этом в результате лечения состояние здоровья улучшится примерно у 60% больных первой группы, а во второй группе – у 30% больных, то налицо значительное превышение действия препарата над плацебо. Следовательно, препарат эффективен. Если же эффект препарата равен плацебо, то следует признать неэффективность препарата. Разработкой препарата занимается сравнительно молодая дисциплина – клиническая фармакология . Если в результате клинических испытаний показано, что препарат эффективен, то врач еще должен оценить возможность побочного действия – нежелательного действия лекарственных веществ. Если, например, врач применяет лекарственное средство для снижения артериального давления и одновременно наблюдает у больного расстройство кишечника при лечении гипотензивным средством, то это и есть пример побочного действия. Степень и выраженность побочного действия бывают такими, что заставляют отказаться от испытания препарата, и тогда дальнейшая разработка препарата прекращается. Однако мало выраженное побочное действие, не несущее непосредственной угрозы здоровью больного, не служит причиной отказа от препарата. Известно, что мочегонные средства, такие как фуросемид, дихлотиазид, снижают концентрацию калия в крови, т.е. вызывают гипокалиемию. Однако такое нарушение коррегируется назначением диеты, богатой этими ионами, либо назначением препаратов калия или других так называемых калийсберегающих диуретиков. Коррекция позволяет успешно лечить больных с сердечно-сосудистыми заболеваниями диуретиками, не беспокоясь о развитии гипокалиемии.

Если клинические испытания прошли успешно, препарат получает разрешение на промышленное производство и применение и поступает в аптечную сеть. Отзывы о нем публикуются в печати, продолжается изучение механизма его действия, и, наконец, препарат занимает должное место в арсенале лекарственных средств. Сложен и долог путь нового лекарства от первого этапа исследования до больного. Чаще всего проходит несколько лет, прежде чем препарат разрешают применять в практике. Из многих тысяч исследованных соединений только некоторые внедряются в практику и получают название лекарственный препарат , хотя, конечно, есть и другие примеры.

Проблемы фармакокинетики

Фармакокинетика – раздел фармакологии, изучающий поведение лекарственных препаратов в организме: их всасывание, распределение, выведение и биотрансформацию . Чтобы лекарственный препарат оказал действие, он должен быть введен в организм. Все пути введения разделяются на две группы: энтеральные и парэнтеральные (от греч. энтерон – желудочно-кишечный тракт). К энтеральным путям введения относится введение через рот (в том числе под язык), в 12-перстную и прямую кишку. К парэнтеральным путям введения, минующим желудочно-кишечный тракт, относится подкожное, внутримышечное, внутривенное введение лекарственных препаратов. Путь введения во многом определяет скорость поступления и выраженность эффекта лекарства.

После введения в организм лекарственное вещество разносится кровью по органам, тканям и жидким средам, но это не значит, что концентрация введенного препарата в каждом органе или ткани одинакова. Равномерному распределению лекарства мешают тканевые барьеры, через которые лекарственные вещества проникают далеко не одинаково. Одним из таких барьеров является гематоэнцефалический: проникновение веществ в центральную нервную систему из крови ограничено, так как ионизированные или нерастворимые в липидах вещества не проникают в мозг через этот барьер. Например, вещества, содержащие четвертичный атом азота, плохо проникают через этот барьер, к таким веществам может быть отнесено биологически активное соединение ацетилхолин. Биологическое значение такого барьера очевидно: проникновение некоторых веществ в мозг из крови существенно нарушило бы его функцию. Поэтому не только биологически активные, но и многие лекарственные вещества (миорелаксанты, ганглиоблокаторы) не проникают через гематоэнцефалический барьер.

Значительно более проницаемым барьером является стенка капилляров, через которую в ткани проникают большинство лекарственных веществ, но не проходят вещества с высоким молекулярным весом, например белок альбумин, имеющий молекулярную массу около 70 000. Эта особенность используется в практике: например, группа веществ высокого молекулярного веса (полиглюкины) применяется в качества кровезаменителей, так как циркулирует в кровяном русле, не проникая в ткани. Плацентарный барьер, отделяющий организм матери от плода, также легко проницаем для лекарств. Поэтому лекарства, вводимые в организм матери, могут оказывать действие и на плод, что необходимо учитывать при проведении терапии беременным женщинам.

Лекарственные вещества, особенно хорошо растворимые в воде, выводятся из организма почками. Летучие вещества выделяются легкими, частично соединения могут выводиться с каловыми массами, а также потовыми железами. Выделение лекарств – одна из причин того, что концентрация препарата в крови падает и эффективность его действия уменьшается.

Кроме того, лекарства подвергаются процессам биотрансформации. Большинство лекарственных веществ растворимы в липидах и представляют собой слабые органические кислоты или основания, которые сравнительно плохо выводятся из организма. Например, после фильтрации в почечных клубочках они реабсорбируются путем диффузии через мембраны и межклеточные соединения клеток канальцев почек. Для быстрого выведения лекарственные вещества должны быть трансформированы в более полярные формы. Поэтому, если в процессе биотрансформации в организме образуются более полярные метаболиты, ионизированные при физиологическом значении pH, менее связанные с белками плазмы, тканевыми белками, они менее способны проникать через мембраны почечного канальца. Поэтому они не подвергаются реабсорбции в почечных канальцах и выделяются с мочой. Этому и служат процессы биотрансформации в организме, которые способствуют выведению лекарства и делают его менее активным.

Химические реакции, участвующие в биотрансформации, разделяются на реакции синтеза (конъюгации) и несинтетические реакции. К первым относятся реакции присоединения к лекарственным веществам продуктов обмена. Известны реакции ацетилирования, т.е. присоединения остатков уксусной кислоты, глюкуроновой и серной кислоты. В реакциях синтеза участвуют и сульфгидрильные группы, связывающие многие органические и неорганические соединения, в частности тяжелые металлы. К неспецифическим реакциям относятся реакции окисления, восстановления и гидролиза.

Ферментные системы, участвующие в биотрансформации, локализованы в печени и эндоплазматическом ретикулуме печеночных клеток. Выделенные в эксперименте, они получили название микросомальные ферменты , поскольку связаны с фракцией микросом, выделяющихся при дифференциальном центрифугировании фрагментов печеночных клеток. Микросомальные ферменты катализируют реакции конъюгации и реакции окисления, в то время как реакции восстановления и гидролиза часто катализируются немикросомальными ферментами.

Активность микросомальных ферментов различна у разных людей и генетически детерминирована, т.е. зависит от генетических особенностей организма. Считают, что величина биотрансформации у отдельных людей может различаться в 6 раз и более, что и определяет индивидуальную чувствительность к препарату. Так, у одних больных необходимый эффект можно достичь дозами, в несколько раз большими, чем у других, и наоборот. Некоторые лекарственные препараты усиливают активность микросомальных ферментов, их называют индукторами , другие – ингибиторы – подавляют их.

Примером значения активности микросомальных ферментов в терапии может служить препарат противотуберкулезного ряда – изониазид. У некоторых больных высока активность микросомальных ферментов, их называют быстрыми инактиваторами изониазида , у других больных эта активность низка, их называют медленными инактиваторами . После шестидневного введения препарата у больных с низкой активностью концентрация изониазида в крови в 2,5 раза выше, чем у первых. У медленных инактиваторов приходится снижать дозу, чтобы не получить нежелательных побочных действий препарата .

Разумеется, «биотрансформируют» лекарства не только печень, но и другие ткани. В результате биотрансформации лекарственные вещества превращаются в метаболиты, которые, как правило, менее активны, чем основное вещество, лучше растворимы и сравнительно легко выводятся из организма почками. Таким образом организм освобождается от введенного лекарства.

Фармакокинетика предусматривает определение скорости инактивации и выделения, оба процесса определяются термином квота элиминации . Она определяет процент вещества от введенной дозы, который метаболизируется и выводится в течение суток. Если этот процент мал, то лекарство при последующих приемах может накапливаться в организме и увеличивать свой эффект. Врач может умело использовать этот феномен, выбирая дозу препарата, которая насыщает организм, затем переходя на меньшую дозу, которая восполняет потерю препарата и носит название поддерживающая доза . Некоторые вещества, например гликозиды наперстянки, применяются именно таким образом.

Продолжение следует

Статья дает базовое представление о том, как в современном мире создаются лекарства. Рассмотрены история драг-дизайна, основные понятия, термины и технологии, применяющиеся в этой сфере. Особое внимание уделено роли вычислительной техники в этом наукоемком процессе. Описаны методы поиска и валидации биологических мишеней для лекарственных препаратов, высокопроизводительный скрининг, процессы клинических и доклинических испытаний лекарств а также применение компьютерных алгоритмов.

Драг-дизайн: история

Индустрия направленного конструирования новых лекарственных препаратов, или, как этот процесс называют, калькируя с английского за неимением такого же короткого и удобного русского термина, драг-дизайн (drug - лекарственный препарат, design - проектирование, конструирование) - сравнительно молодая дисциплина, но все же не настолько молодая, как это принято считать .

Рисунок 1. Пауль Эрлих, впервые выдвинувший гипотезу о существовании хеморецепторов и их возможного использования в медицине.

Национальная библиотека медицины США

К концу девятнадцатого века химия достигла значительной степени зрелости. Была открыта таблица Менделеева, разработана теория химической валентности, теория кислот и оснований, теория ароматических соединений. Этот несомненный прогресс дал толчок и медицине. Новые химические продукты - синтетические краски, производные смол, начали использоваться в медицине для дифференциального окрашивания биологических тканей. В 1872–1874 годах в Страсбурге, в лаборатории известного анатома Вильгельма Валдеера, студент-медик Пауль Эрлих (рис. 1), изучавший селективную окраску тканей, впервые выдвинул гипотезу о существовании хеморецепторов - специальных тканевых структур, специфически взаимодействующих с химическими веществами, и постулировал возможность использования этого феномена в терапии различных заболеваний. Позже, в 1905 году, эта концепция была расширена Дж. Лэнгли, предложившим модель рецептора как генератора внутриклеточных биологических импульсов, который активируется агонистами и инактивируется антагонистами.

Этот момент можно считать рождением хемотерапии и новым витком в фармакологии, и в 20-м веке это привело к беспрецедентному успеху в клинической медицине. Одним из самых громких достижений фармакологической промышленности 20-го века можно по праву назвать пенициллин, антибиотик, открытый в 1929 году Александром Флемингом и исследованный впоследствии Чейном и Флори. Пенициллин, обладающий антибактериальным действием, сослужил человечеству незаменимую службу в годы Второй мировой войны, сохранив жизни миллионам раненых.

Пораженные успехом пенициллина, многие фармацевтические компании открыли собственные микробиологические подразделения, возлагая на них надежды по открытию новых антибиотиков и других лекарств. Последовавшие успехи биохимии привели к тому, что стало возможным теоретически предсказывать удачные мишени для терапевтического воздействия, а также модификации химических структур лекарств, дающих новые соединения с новыми свойствами. Так, антибиотик сульфаниламид в результате ряда исследований дал начало целым семействам гипогликемических, диуретических и антигипертензивных препаратов. Драг-дизайн поднялся на качественно новый уровень, когда разработка новых лекарственных соединений стала не просто плодом работы воображения химиков, а результатом научного диалога между биологами и химиками.

Новый прорыв был связан с развитием молекулярной биологии, позволившей привлечь к разработкам информацию о геноме, клонировать гены, кодирующие терапевтически важные биологические мишени и экспрессировать их белковые продукты.

Завершение ознаменовавшего начало нового тысячелетия проекта «геном человека», в результате которого была прочитана полная информация, содержащаяся в ДНК человека, явилось настоящим триумфом раздела биологической науки, получившей название «геномика». Геномика дает совершенно новый подход к поиску новых терапевтически важных мишеней, позволяя искать их непосредственно в нуклеотидном тексте генома.

Геном человека содержит 12000–14000 генов, кодирующих секретируемые белки. На данный момент в фармацевтической промышленности используется не более 500 мишеней. Существуют исследования, говорящие, что многие заболевания являются «мультифакторными», то есть обуславливаются дисфункцией не одного белка или гена, а 5–10 связанных между собой белков и кодирующих их генов. Исходя из этих соображений можно заключить, что количество исследуемых мишеней должно увеличиться минимум в 5 раз.

Биохимическая классификация исследуемых в настоящее время биологических мишеней и их численное соотношение представлены на рисунке 2. Особо следует отметить, что бóльшую (>60%) долю рецепторов составляют мембранные G-белок сопряженные рецепторы (GPCR , G-protein coupled receptors ), а суммарный объем продаж лекарств, направленных на взаимодействие с ними, равняется 65 млрд. долл. ежегодно, и продолжает расти.

Основные понятия

Рисунок 3. Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист ), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист ) и уменьшение ответа (антагонист ).

Основные понятия, используемые в драг-дизайне - это мишень и лекарство . Мишень - это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени - это рецепторы и ферменты. Лекарство - это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа - так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (рис. 3):

  1. Агонисты увеличивают клеточный ответ.
  2. Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем.
  3. Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

Определение и валидация мишени

Один из самых ранних и самых важных этапов драг-дизайна - выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;
  • мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;
  • мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;
  • также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование или нокаут рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм - то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 10 40 различных лигандов, в то время как с момента возникновения вселенной прошло лишь ~10 17 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness ), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • иметь менее пяти атомов-доноров водородной связи;
  • обладать молекулярным весом менее 500;
  • иметь липофильность (log P - коэффициент распределения вещества на границе раздела вода-октанол) менее 5;
  • иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» - соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro ) или его компьютерного (in silico ) анализа - высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (>10 000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • низкопроизводительный (10000–50000 образцов);
  • среднепроизводительный (50000–100000 образцов);
  • высокопроизводительный (100000–5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (рис. 4).

Рисунок 4. Аппаратура, используемая для высокопроизводительного скрининга. А - Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке - тысячи. Объем системы в одной лунке - микролитры. Объем вносимого образца - нанолитры. Б - Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность - более 100 000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой - нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3–4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг . Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно - сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом - сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (рис. 5).

Рисунок 5. Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии - за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования - за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии - за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях - в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (рис. 6).

Рисунок 6. Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro ) или компьютерный (in silico ) вариант, - главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Клинические исследования

Медицина - это область, в которой ни в коем случае не следует спешить. В особенности, если речь идет о разработке новых лекарственных препаратов. Достаточно вспомнить историю с препаратом Талидамидом, разработанным в конце 50-х в Германии, применение которого беременными женщинами приводило к рождению детей с врожденными пороками конечностей, вплоть до их полного отсутствия. Этот побочный эффект не был вовремя выявлен во время клинических исследований в силу недостаточно тщательного и аккуратного тестирования.

Поэтому в настоящее время процедура тестирования лекарств достаточно сложна, дорога и требует значительного времени (2–7 лет тестирования в клинике и от 100 миллионов долларов на одно соединение-кандидат, см. рис. 7).

Рисунок 7. Процесс разработки нового лекарства занимает от 5 до 16 лет. Затраты на клиническое тестирование одного соединения-кандидата составляют более 100 миллионов долларов США. Суммарная стоимость разработки, с учетом препаратов, не достигших рынка, часто превышает 1 миллиард долларов.

Прежде всего, еще до поступления в клинику, препараты исследуются на токсичность и канцерогенность, причем исследования должны проводиться, кроме систем in vitro , как минимум на двух видах лабораторных животных. Токсичные препараты, само собой, в клинику не попадают, за исключением тех случаев, когда они предназначены для терапии особо тяжелых заболеваний и не имеют пока менее токсичных аналогов.

Кроме того, препараты подвергаются фармакокинетическим исследованиям, то есть тестируются на такие физиологические и биохимические характеристики, как поглощение, распределение, метаболизм и выведение (по-английски обозначается аббревиатурой ADME - Absorption, Distribution, Metabolism and Extraction ). Биодоступность, например, является подхарактеристикой введения препарата в организм, характеризующая степень потери им биологических свойств при введении в организм. Так, инсулин, принимаемый перорально (через рот), имеет низкую биодоступность, так как, будучи белком, расщепляется желудочными ферментами. Поэтому инсулин вводят либо подкожно, либо внутримышечно. По этой же причине часто разрабатывают препараты, действующие аналогично своим природным прототипам, но имеющие небелковую природу.

Юридически процесс клинических исследований новых препаратов имеет очень много нюансов, так как они требуют огромного количества сопроводительной документации (в сумме несколько тысяч страниц), разрешений, сертификаций и т.д. Кроме того, многие формальные процедуры сильно разнятся в разных странах в силу различного законодательства. Поэтому, для решения этих многочисленных вопросов, существуют специальные компании, принимающие от крупных фармацевтических компаний заказ на проведение клинических испытаний и перенаправляющие их в конкретные клиники, сопровождая весь процесс полной документацией и следя, чтобы никакие формальности не были нарушены.

Роль вычислительной техники в драг-дизайне

В настоящее время в драг-дизайне, как и в большинстве других наукоемких областей, продолжает увеличиваться роль вычислительной техники. Следует сразу оговорить, что современный уровень развития компьютерных методик не позволяет разработать новый лекарственный препарат, используя только компьютеры. Основные преимущества, которые дают вычислительные методы в данном случае - это сокращение времени выпуска нового лекарства на рынок и снижение стоимости разработки.

Основные компьютерные методы, используемые в драг-дизайне, это:

  • молекулярное моделирование (ММ);
  • виртуальный скрининг;
  • дизайн новых лекарственных препаратов de novo ;
  • оценка свойств «подобия лекарству»;
  • моделирование связывания лиганд-мишень.

Методы ММ, основывающиеся на структуре лиганда

В случае, если ничего не известно про трехмерную структуру мишени (что случается достаточно часто), прибегают к методикам создания новых соединений исходя из информации о структуре уже известных лигандов и данных по их активности.

Подход основывается на общепринятой в химии и биологии парадигме, гласящей, что структура определяет свойства. Основываясь на анализе корреляций между структурой известных соединений и их свойствами, можно предсказать структуру нового соединения, обладающего желаемыми свойствами (или же, наоборот, для известной структуры предсказать свойства). Причем, этот подход используется как при модификации известных структур с целью улучшения их свойств, так и при поиске новых соединений используя скрининг библиотек соединений.

Методы определения похожести молекул (или методы отпечатков пальцев) состоят в дискретном учете определенных свойств молекулы, называемых дескрипторами (например, число доноров водородной связи, число бензольных колец, наличие определенного заместителя в определенном положении и т.д.) и сравнивании получившегося «отпечатка» с отпечатком молекулы с известными свойствами (используемой в качестве образца). Степень похожести выражается коэффициентом Танимото, изменяющимся в диапазоне 0–1. Высокая похожесть предполагает близость свойств сравниваемых молекул, и наоборот.

Методы, основывающиеся на известных координатах атомов лиганда, называются методами количественной связи между структурой и активностью (QSAR , Quantitative Structure-Activity Relationship ). Один из наиболее используемых методов этой группы - метод сравнительного анализа молекулярных полей (CoMFA , Comparative Molecular Field Analysis ). Этот метод заключается в приближении трехмерной структуры лиганда набором молекулярных полей, отдельно характеризующих его стерические, электростатические, донорно-акцепторные и другие свойства. CoMFA модель строится на основании множественного регрессионного анализа лигандов с известной активностью и описывает лиганд, который должен хорошо связываться с исследуемой мишенью, в терминах молекулярных полей. Полученный набор полей говорит, в каком месте у лиганда должен быть объемный заместитель, а в каком - маленький, в каком полярный, а в каком - нет, в каком донор водородной связи, а в каком - акцептор, и т.д.

Модель может использоваться в задачах виртуального скрининга библиотек соединений, выступая в данном случае аналогом фармакофора. Самым главным недостатком этого метода является то, что он обладает высокой предсказательной силой лишь на близких классах соединений; при попытке же предсказать активность соединения другой химической природы, чем лиганды, использовавшиеся для построения модели, результат может оказаться недостаточно достоверным.

Схема возможного процесса создания нового лекарства, основывающегося на структуре лиганда, приведена на рисунке 8.

Рисунок 8. Пример молекулярного моделирования, основывающегося на структуре лиганда. Для циклического пептида уротензина II (внизу слева ) определена трехмерная структура методом ЯМР спектроскопии водного раствора (вверху слева ). Пространственное взаиморасположение аминокислотных остатков мотива ТРП-ЛИЗ-ТИР, являющегося важным для биологической функции, было использовано для построения модели фармакофора (вверху справа ). В результате виртуального скрининга найдено новое соединение, демонстрирующее биологическую активность (внизу справа ).

Очевидно, что достоверность моделирования, как и эффективность всего процесса конструирования нового лекарства, можно существенно повысить, если учитывать данные не только о структуре лигандов, но и о структуре белка-мишени. Методы, учитывающие эти данные, носят общее название «драг-дизайн, основывающийся на структурной информации» (SBDD , Structure-Based Drug Design ).

Методы ММ, основывающиеся на структуре белка

В связи с растущим потенциалом структурной биологии, все чаще можно установить экспериментальную трехмерную структуру мишени, или построить ее молекулярную модель, основываясь на гомологии с белком, чья трехмерная структура уже определена.

Наиболее часто используемые методы определения трехмерной структуры биомакромолекул с высоким разрешением (Часто, когда экспериментальная структура мишени все же недоступна, прибегают к моделированию на основании гомологии - методу, для которого показано, что построенная им модель обладает достаточно высоким качеством, если гомология между структурным шаблоном и моделируемым белком не ниже 40%.

Особенно часто к моделированию по гомологии прибегают при разработке лекарств, направленных на G-белок сопряженные рецепторы, так как они, будучи мембранными белками, очень плохо поддаются кристаллизации, а методу ЯМР пока недоступны такие большие белки. Для этого семейства рецепторов известна структура только одного белка - бычьего родопсина, полученная в 2000 г. в Стэнфорде, которая и используется в качестве структурного шаблона в подавляющем числе исследований .

Обычно при исследовании, базирующемся на структурных данных, учитывают также данные по мутагенезу мишени, чтобы установить, какие аминокислотные остатки наиболее важны для функционирования белка и связывания лигандов. Эти сведения особенно ценны при оптимизации построенной модели, которая, будучи лишь производной от структуры белка-шаблона, не может учитывать всей биологической специфики моделируемого объекта.

Трехмерная структура мишени, кроме того, что может объяснить молекулярный механизм взаимодействия лиганда с белком, используется в задачах молекулярного докинга, или компьютерном моделировании взаимодействия лиганда с белком. Докинг использует в качестве стартовой информации трехмерную структуру белка (на данном этапе развития технологии, как правило, конформационно неподвижную), и структуру лиганда, конформационная подвижность и взаиморасположение с рецептором которого моделируется в процессе докинга. Результатом докинга является конформация лиганда, наилучшим образом взаимодействующая с белковым сайтом связывания, с точки зрения оценочной функции докинга, приближающей свободную энергию связывания лиганда. Реально, в силу множества приближений, оценочная функция далеко не всегда коррелирует с соответствующей экспериментальной энергией связывания.

Докинг позволяет сократить затраты средств и времени за счет проведения процедуры, аналогичной высокопроизводительному скринингу, на компьютерных комплексах. Эта процедура называется виртуальным скринингом, и основным ее преимуществом является то, что для реальных фармакологических испытаний нужно приобретать не целую библиотеку, состоящую из миллиона соединений, а только «виртуальные прототипы». Обычно же, с целью избежания ошибок, скрининг и докинг используются одновременно, взаимно дополняя друг друга (рис. 9).

Рисунок 9. Два варианта совместного использования высокопроизводительного скрининга и молекулярного моделирования. Сверху: последовательный итеративный скрининг. На каждом шаге процедуры используется сравнительно небольшой набор лигандов; по результатам скрининга строится модель, объясняющая связь между структурой и активностью. Модель используется для выбора следующего набора лигандов для тестирования. Снизу: «разовый» скрининг. На каждом шаге модель строится по обучающей выборке и используется для предсказаний на тестовой выборке.

С увеличением компьютерных мощностей и появлением более корректных и физичных алгоритмов, докинг будет лучше оценивать энергию связывания белка с лигандом, начнет учитывать подвижность белковых цепей и влияние растворителя. Однако, неизвестно, сможет ли виртуальный скрининг когда-нибудь полностью заменить реальный биохимический эксперимент; если да - то для этого необходим, очевидно, качественно новый уровень алгоритмов, неспособных на сегодняшний день абсолютно корректно описать взаимодействие лиганда с белком.

Одно из явлений, иллюстрирующих несовершенство алгоритмов докинга, - парадокс похожести. Этот парадокс заключается в том, что соединения, структурно совсем немного различающиеся, могут иметь драматически различную активность, и в то же время с точки зрения алгоритмов докинга быть практически неразличимыми.

Прототипы лекарства можно получать не только выбирая из уже подготовленной базы данных соединений. Если есть структура мишени (или хотя бы трехмерная модель фармакофора), возможно построение лигандов de novo, используя общие принципы межмолекулярного взаимодействия. При этом подходе в сайт связывания лиганда помещается один или несколько базовых молекулярных фрагментов, и лиганд последовательно «наращивается» в сайте связывания, подвергаясь оптимизации на каждом шаге алгоритма. Полученные структуры, так же, как и при докинге, оцениваются с помощью эмпирических оценочных функций.

Ограничения применения компьютерных методов

Несмотря на всю свою перспективность, компьютерные методы имеют ряд ограничений, которые необходимо иметь ввиду, чтобы правильно представлять себе возможности этих методов.

Прежде всего, хотя идеология in silico подразумевает проведение полноценных компьютерных экспериментов, то есть экспериментов, результаты которых ценны и достоверны сами по себе, необходима обязательная экспериментальная проверка полученных результатов. То есть, подразумевается тесное сотрудничество научных групп, проводящих компьютерный эксперимент, с другими экспериментальными группами (рис. 5).

Кроме того, компьютерные методы пока не в силах учесть всего разнообразия влияния лекарственного препарата на организм человека, поэтому эти методы не в силах ни упразднить, ни даже существенно сократить клиническое тестирование, занимающее основную долю времени в разработке нового препарата.

Таким образом, на сегодняшний день роль компьютерных методов в драг-дизайне сводится к ускорению и удешевлению исследований, предшествующих клиническим испытаниям.

Перспектива драг-дизайна

Привлечение инвестиций в научно-исследовательскую деятельность в сфере биофармацевтики и создание новых лекарств на основе простагландинов от неизлечимых сейчас болезней — основное направление стартапа Gurus BioPharm, резидента ИЦ «Сколково». Об истории компании, возникшей в 2011 году, ее продуктах и инвестициях в биомедицинские инновации «Инвест-Форсайту» рассказал один из основателей проекта Игорь Тетерин.

История стартапа

Игорь Тетерин

Стартап Gurus BioPharm юридически был образован в 2011 году Игорем Тетериным и Игорем Любимовым . Они поставили перед собой две главные цели, которые должен решать стартап. Это налаживание механизма коммерциализации отечественных проектов в области биофармацевтики и оказание помощи людям с хроническими и неизлечимыми заболеваниями посредством разработки высокоэффективных лекарств.

Первый опыт ведения собственного бизнеса у Игоря Тетерина появился в 2005 году после увольнения с позиции директора по маркетингу из организации «Адам» (дистрибьютора глубокой заморозки продуктов питания), когда пришла идея по созданию фирмы «Гурус». Изначально его новоиспеченная организация занималась сопровождением сделок по купле и продаже небольших предприятий и привлечением инвестиций для развивающихся и перспективных производств. Позже в ее сфере интересов появились бизнес-проекты для фармацевтической отрасли по оценке инновационных молекул, исследования в области маркетинга этого сегмента рынка, due diligence (независимая оценка объекта инвестирования).

Игорь Любимов, ныне генеральный директор Gurus BioPharm, до создания компании строил свою научно-исследовательскую карьеру в государственном НИИ, работал на высоких позициях в инвестиционных организациях в сфере развития биомедицинских технологических решений и фармацевтики.

В конце 2010 года они объединились в одну команду. Однако первые инвестиции в их стартап были привлечены лишь в 2014 году — получены $800 000 на конкурсной основе от Минпромторга РФ для доклинических исследований инновационного лекарства GUR-801, корректирующего когнитивные нарушения. После этого развернулась полноценная деятельность и бурное развитие компании. Уже через год, в 2015 году, Gurus BioPharm привлек от Минобрнауки РФ $700 000 на доклинические исследования лекарственного средства от астмы GUR-501, основу которого составляют простагландины. Этот проект поддержан ведущими пульмонологами России.

Сейчас в группу «Гурус» входят венчурный биомедицинский фонд «Гурус БиоВенче», научно-исследовательская лаборатория ООО «Гурус БиоФарм» и технологическое подразделение ООО «Нокси Лаб». Разрабатывается около 10 проектов.

Принципы работы компании

Научно-исследовательские мероприятия проходят на арендованных площадях в ИЦ «Сколково». Все процедуры проводятся на современном оборудовании, которое было приобретено самостоятельно. В штате компании трудится около 10 постоянных сотрудников, в основном химики и биологи. Gurus BioPharm работает по двум направлениям: разработка лекарственных препаратов и создание косметологических средств. Для справки: такая исследовательская деятельность лицензированию не подлежит, но выпуск лекарственных препаратов должен лицензироваться.

Разработка фармакологической продукции производится в несколько этапов. Изначально любой проект инновационного препарата проходит различные экспертизы и комплекс первичных исследований (по токсикологии, механизму воздействия, специфической активности и другим параметрам) в лаборатории Gurus BioPharm. Этот этап длится от 6 до 12 месяцев. Если перспективность проекта доказана, он попадает в портфель инвестиционного фонда «Гурус БиоВенче». Фонд на данном этапе развития обслуживает только проекты аффилированной исследовательской лаборатории. Далее начинается поиск частных инвесторов, участие в государственных конкурсах. Вся разработка патентуется как в России, так и за рубежом. Примерная общая стоимость получения патентов в США, Японии, Австралии, ЕС, Бразилии равна 1,5 млн рублей. Изначально при небольшом количестве проектов патентами и регистрацией товарных знаков занимались сотрудники «Сколково», однако потом потребовался собственный специалист, так как регистрация прав на технологию в некоторых государствах может происходить до нескольких лет.

Следующий этап — доклинические исследования. Он заключается в проверке работы молекул препарата на клеточном уровне (в пробирках), их испытаниях на животных и прочие мероприятия. Это сложная стадия, которая может длиться более 5 лет. Если доклинические исследования подтвердили эффективность лекарства, его безопасность, начинаются клинические исследования на людях (бывает 2 фазы таких мероприятий).

Gurus BioPharm после завершения 1 или 2 фазы клинических испытаний продает проект лекарственного средства международным или отечественным фармакологическим компаниям, которые занимаются уже регистрацией и выпуском лекарственной продукции.

Доклинические исследования первых двух лекарств оценивались в 88 млн рублей. Из этой суммы 22 млн рублей — собственные средства группы «Гурус» и частные инвестиции от партнеров по предшествующими бизнесу основателей, остальная часть — государственное финансирование. По словам Игоря Тетерина, именно привлечение инвестиций на этой фазе разработки биофармацевтических продуктов является самым сложным, так как инвесторы неохотно вкладывают средства в продукт, эффективность которого еще не доказана. Количество в России таких инвесторов можно сосчитать на пальцах.

Второе направления деятельности — создание высокоэффективных косметологических средств. Однако схема работы по этому направлению отличается — регистрацией готового продукта, его выпуском и реализацией на отечественном рынке. Именно это направление будет приносить в ближайшей перспективе доход организации.

Имеющиеся проекты

Сейчас ведется разработка 5 инновационных лекарственных препаратов, которые призваны излечить или скорректировать такие заболевания, как астма, болезнь Паркинсона, критическая ишемия конечностей, хроническая обструктивная болезнь лёгких, эректильная дисфункция. Разработки по последним трем недугам находятся на начальной стадии. Лекарство от астмы GUR-501 уже готово к клиническим исследованиям на людях.

Также сейчас проводится проверка безопасности косметики, направленной на антивозрастное восстановление кожи и ее обновление после хирургической косметологии.

Уже разработаны высокоэффективные косметические средства для стимуляции роста волос ресниц, головы и бровей, которые прошли процедуру регистрации продукта, клинические испытания на людях и запускаются в продажу. Целевая аудитория широкая — средствами могут пользоваться как мужчины, так и женщины разных возрастных категорий.

Продукты будут реализовываться в разрабатываемом интернет-магазине. Сейчас также создается маркетинговый отдел, который будет заниматься продвижением (интернет-маркетинг, публикации в СМИ, участие в семинарах и конференциях) и продажами продуктов. После обкатки бизнес-процессов будет проводиться работа с врачами для популяризации косметики. По словам Игоря Тетерина, в планах Gurus BioPharm — возможный выход на международные рынки, так как пробные продажи уже показали положительную динамику и спрос.

Об инвестициях в биофармацевтические разработки

Проекты создания инновационных лекарственных препаратов и медицинской техники — слишком сложные, капиталоемкие и непонятные для многих частных инвесторов, но в то же время такие инновации являются лидерами по доходности. Индекс доходности биомедицинских стартапов, по данным Thomson Reuters — VC Index, показал доходность 540% в период 2010—2015 гг. По словам Игоря Тетерина, от входа в проект до успешного выхода может понадобиться не один миллион долларов: в среднем до 5 лет ожидания и крепкие нервы, чтобы пережить возможные риски. В западных странах затраты намного выше — десятки миллионов долларов, а сроки и риски — примерно те же. Ежегодно просматривается рост интереса инвестиционных компаний в подобные проекты.

Конечно, определённую часть накручивает аптека, другую возьмёт себе компания - дистрибьютор лекарства, немало потратит производитель на маркетинг - продвижение и рекламу препарата. Посчитайте ещё реальные затраты производителя на разработку и производство препарата.

На вопрос, что же вызывает увеличение стоимости лекарственных препаратов, отвечает
Светлана Завидова, исполнительный директор Ассоциации организаций по клиническим исследованиям .

Но есть самая весомая статья расходов, на которой экономить - пациенту во вред. Это клинические исследования препаратов, которые должны доказать: лекарство безопасное и эффективное.

У жизненного цикла лекарства долгий и трудный путь - от момента первой работы учёных по подбору нужной молекулы вещества до вывода препарата на рынок. 10 тысяч молекул-кандидатов участвуют в скрининге. И, наконец, до финишной ленточки доходит одно-единственное вещество, которое и станет препаратом.

На первом этапе производители препарата проводят доклинические исследования на лабораторных животных и специальных биологических моделях. Здесь главное - получить верную информацию о безопасности вещества и оценить его способность оказывать желаемый эффект. Если он отсутствует, препарат на клинические исследования не попадёт. Но насколько действенен препарат, можно будет доказать лишь на следующем этапе - клинических исследованиях с непосредственным участием людей. И избежать столь долгой цепочки испытаний никак нельзя, как показала печальная история, случившаяся в Европе.

Талидомидовая трагедия

Почти 60 лет тому назад немецкая фармацевтическая компания Chemie Grunenthal разработала препарат талидомид.

Сначала его хотели применять как лекарство против судорог. Но медиков впечатлило другое действие препарата - успокоительное. Врачи посчитали изобретение талидомида серьёзным прорывом в лечении бессонницы.

Были проведены опыты на грызунах. Передозировка не убивала лабораторных животных, что позволило считать препарат безопасным. Однако седативного воздействия лекарство не оказывало на мышей, поэтому представителям фармкомпании пришлось изготовить особую клетку, которая использовалась для измерения малейших движений животных. Несмотря на то, что грызуны после приёма пилюль бодрствовали, их движения замедлялись в большей степени, чем у тех животных, которым вводили другие успокоительные средства. Комиссия убедилась в эффективности и безопасности предложенных таблеток и дала лицензию на производство.

Через 2 года после этого препарат был официально выпущен в продажу в Европе и ряде других стран. В общей сложности талидомид продавался в 46 государствах под 37 разными названиями. Никаких дополнительных независимых исследований препарата ни в одной стране не проводилось.

В 1958 году производители, не проведя никаких исследований, голословно заявили, что талидомид - лучшее средство для беременных, склонных к расстройствам сна. И то было роковой ошибкой. Уже спустя 9 месяцев в Европе начали рождаться малыши с различными уродствами - отсутствием ушных раковин, верхних или нижних конечностей, дефектами глаз и мимической мускулатуры. Кроме того, талидомид влиял на формирование внутренних органов, разрушительным образом действуя на сердце, печень, почки, пищеварительную и мочеполовую системы младенца, а также мог приводить к рождению детей с эпилепсией, аутизмом.

По разным подсчётам, жертвами стали от 8000 до 12 000 детей, матери которых принимали препараты талидомида во время беременности. 7 тысяч младенцев умерли в первые минуты жизни. Пожалуй, это была одна из самых скандальных историй, связанных с побочными эффектами от какого-либо препарата. В дальнейшем оказалось, что у зародышей обезьян талидомид вызывает такие же уродства, что и у человека. Этот пример ещё раз доказывает необходимость проверки каждого нового лекарства, даже если исследования - очень длительный и дорогостоящий процесс.

Как происходят клинические исследования

При регистрации препарата специалисты должны оценить все доказательства, которые были добыты на предшествующих этапах исследования. Клинические испытания должны в первую очередь подтвердить безопасность применения препарата у человека, а затем эффективность того, как препарат влияет на конкретного больного.

Причём в первую фазу клинических исследований привлекаются 20-100 здоровых добровольцев. На них проверяются переносимость препарата, фармакокинетика (химические превращения лекарства в организме), фармакодинамика (механизм действия лекарства на организм).

Во второй фазе лекарство испытывается уже на 100-500 пациентах, что позволяет подобрать дозировку, продумать схемы приёма препаратов, оценить эффективность нового лекарства, проверить первые гипотезы.

Как правило, на этой стадии уже проводятся международные исследования, потому что задача фармкомпании как можно быстрее вывести препарат на рынок и набрать необходимый пул пациентов, для которых разрабатывается препарат. Быстрее всего это можно сделать, если привлечь разные страны. Для производителя это необходимый задел на то, чтобы потом не медля выйти на международный рынок.

До 3000 пациентов и более может быть привлечено к третьей, самой массовой фазе исследований, когда подтверждается эффективность препарата для определённого показания в определённой популяции.

После регистрации проходит четвёртая фаза исследований. Круг пациентов расширяется, фармкомпании могут собрать дополнительную информацию по безопасности препарата, проследить взаимодействие его с другими лекарствами. Уважающая себя компания, как, например, отечественная «НПО Петровакс Фарм», будет продолжать проводить пострегистрационные клинические и наблюдательные исследования, несмотря на накопленный опыт применения препаратов на рынке, чтобы оценить эффективность и безопасность в разных группах пациентов, сравнить с существующими аналогами, изучить возможность расширения показаний к применению.

20 лет на всё про всё

Если препарат, который только появился на рынке, изобретён и синтезирован впервые, он называется оригинальным. В течение 20 лет он защищён патентом - другие производители не могут выпускать и продавать лекарства с тем же действующим веществом. По истечении этого времени химическая формула лекарства может копироваться другими производителями. Они регистрируют препарат с тем же действующим веществом, но уже под другим торговым наименованием. Так появляются лекарства-дженерики.

Задача производителя оригинального препарата - как можно быстрее вый-ти на рынок, ведь у него всего 20 лет на всё про всё. Но первый этап - исследования и регистрация - занимает до 10, а иногда и более лет. В оставшееся до окончания патента время производителю оригинального препарата необходимо окупить затраты на этапе разработки (от поиска действующей молекулы до завершения клинических испытаний). А они, по данным Ассоциации американских фармпроизводителей, могут составлять астрономические суммы - 1,8-2,4 млрд долларов. Именно поэтому разработкой новых препаратов занимаются только наиболее крупные компании - мелким это просто не по карману.

Что касается дженериков, то, конечно, их проще выводить на рынок. Хотя клинические исследования проводятся, но идут они по упрощённой схеме: уже не проверяется весь процесс эффективности, задача - посмотреть, как быстро вещество попадает в системный кровоток, с той же скоростью, как у оригинального препарата, или медленнее, каким образом оно потом выводится. Механизм более простого вывода дженерика на рынок оправдан, поскольку государство заинтересовано в получении дешёвых препаратов и повышении их доступности на рынке. И при соблюдении надлежащих условий контроля за качеством дженерик становится совершенно нормальным лекарством, порою в несколько раз дешевле оригинального.

Миф о «подопытных кроликах»

У нас распространено заблуждение, что Россия используется как полигон для испытания новых препаратов. Если посмотреть на цифры, это совсем не так. Доля участия нашей страны в международных клинических исследованиях составляет всего 1%. Здесь лидируют другие страны - Бельгия, Швейцария, Израиль, Швеция, США. Чаще всего Россия принимает участие в исследовании препаратов для лечения онкологических, неврологических, ревматологических, инфекционных и пульмонологических заболеваний.

Как уже объяснялось, участие нашей страны в клинических исследованиях - шанс для неё получить необходимые инновационные препараты одной из первых. Потенциал возможностей провести клинические испытания на территории нашей страны огромный. Но зарубежные компании сталкиваются с бюрократическими препонами при получении разрешающих документов. И если фармкомпании необходимо набрать 1000 пациентов для второй фазы исследований, то частенько к моменту, когда наконец в России выдаётся долгожданное разрешение, оказывается, уже набрано необходимое число больных в других странах.

Как решить проблему дороговизны лекарств

Но всё же как сделать, чтобы человеку были доступны хорошие инновационные препараты? Здесь заботу о своих гражданах должно проявить государство. Оно обязано участвовать в ценообразовании на лекарства, поскольку их доступность для населения является составной частью социальной политики и здравоохранения.

Государство, пытаясь стабилизировать и регулировать цены на определённые препараты, создало так называемый Перечень жизненно необходимых и важнейших лекарственных препаратов (ЖНВЛП). Но порой этот перечень в России существует только на бумаге, на практике оказываясь бесполезным, потому что бюджета на его реализацию не заложено. Лекарства, внесённые в этот перечень, составляют едва ли не треть всех обращающихся на рынке средств. Однако среди них есть неэффективные и бесполезные, которые никак нельзя назвать жизненно важными.

В идеальном варианте государство должно составить список лекарств, стоимость которых оно готово возмещать покупателям в рамках компенсации стоимости лечения. А пока поход в аптеку становится разорением для карманов большинства россиян.