Курсовая работа: Дисперсионный анализ. Дисперсионный анализ

Все люди от природы стремятся к знанию. (Аристотель. Метафизика)

Дисперсионный анализ

Вводный обзор

В этом разделе мы рассмотрим основные методы, предположения и терминологию дисперсионного анализа.

Отметим, что в англоязычной литературе дисперсионный анализ обычно называется анализом вариации. Поэтому, для краткости, ниже мы иногда будем использовать термин ANOVA (An alysis o f va riation ) для обычного дисперсионного анализа и термин MANOVA для многомерного дисперсионного анализа. В этом разделе мы последовательно рассмотрим основные идеи дисперсионного анализа (ANOVA ), ковариационного анализа (ANCOVA ), многомерного дисперсионного анализа (MANOVA ) и многомерного ковариационного анализа (MANCOVA ). После краткого обсуждения достоинств анализа контрастов и апостериорных критериев рассмотрим предположения, на которых основаны методы дисперсионного анализа. Ближе к концу этого раздела поясняются преимущества многомерного подхода для анализа повторных измерений по сравнению с традиционным одномерным подходом.

Основные идеи

Цель дисперсионного анализа. Основной целью дисперсионного анализа является исследование значимости различия между средними. Глава (глава 8) содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t - критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t - критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к вводному обзору главы (глава 9).

Откуда произошло название Дисперсионный анализ ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними, мы на самом деле анализируем дисперсии.

Разбиение суммы квадратов

Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS (от английского Sum of Squares – Сумма Квадратов). В основе дисперсионного анализа лежит разделение (или разбиение) дисперсии на части. Рассмотрим следующий набор данных:

Средние двух групп существенно различны (2 и 6 соответственно). Сумма квадратов отклонений внутри каждой группы равна 2. Складывая их, получаем 4. Если теперь повторить эти вычисления без учета групповой принадлежности, то есть, если вычислить SS исходя из общего среднего этих двух выборок, то получим 28. Иными словами, дисперсия (сумма квадратов), основанная на внутригрупповой изменчивости, приводит к гораздо меньшим значениям, чем при вычислении на основе общей изменчивости (относительно общего среднего). Причина этого, очевидно, заключается в существенной разнице между средними значениями, и это различие между средними и объясняет существующее различии между суммами квадратов. В самом деле, если использовать для анализа приведенных данных модуль Дисперсионный анализ , будут получены следующие результаты:

Как видно из таблицы, общая сумма квадратов SS =28 разбита на сумму квадратов, обусловленную внутригрупповой изменчивостью (2+2=4 ; см. вторую строку таблицы) и сумму квадратов, обусловленную различием средних значений. (28-(2+2)=24; см первую строку таблицы).

SS ошибок и SS эффекта. Внутригрупповая изменчивость (SS ) обычно называется дисперсией ошибки. Это означает, что обычно при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффекта (или межгрупповую изменчивость) можно объяснить различием между средними значениями в изучаемых группах. Иными словами, принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.

Проверка значимости. Основные идеи проверки статистической значимости обсуждаются в главе Элементарные понятия статистики (глава 8). В этой же главе объясняются причины, по которым многие критерии используют отношение объясненной и необъясненной дисперсии. Примером такого использования является сам дисперсионный анализ. Проверка значимости в дисперсионном анализе основана на сравнении дисперсии, обусловленной межгрупповым разбросом (называемой средним квадратом эффекта или MS эффект ) и дисперсии, обусловленной внутригрупповым разбросом (называемой средним квадратом ошибки или MS ошибка ). Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие в выборочных средних из-за случайной изменчивости. Поэтому при нулевой гипотезе внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета группой принадлежности. Полученные внутригрупповые дисперсии можно сравнить с помощью F - критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1. В рассмотренном выше примере F - критерий показывает, что различие между средними статистически значимо.

Основная логика дисперсионного анализа. Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости разницы между средними (для групп или переменных). Эта проверка проводится с помощью анализа дисперсии, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Зависимые и независимые переменные. Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, балл, набранный при тестировании), называются зависимыми переменными. Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы) называются факторами или независимыми переменными. Более подробно эти понятия описаны в главе Элементарные понятия статистики (глава 8).

Многофакторный дисперсионный анализ

В рассмотренном выше простом примере вы могли бы сразу вычислить t-критерий для независимых выборок, используя соответствующую опцию модуля Основные статистики и таблицы. Полученные результаты, естественно, совпадут с результатами дисперсионного анализа. Однако дисперсионный анализ содержит гибкие и мощные технические средства, которые могут быть использованы для гораздо более сложных исследований.

Множество факторов. Мир по своей природе сложен и многомерен. Ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. Например, если мы пытаемся научиться выращивать большие помидоры, следует рассматривать факторы, связанные с генетической структурой растений, типом почвы, освещенностью, температурой и т.д. Таким образом, при проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которой использование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью t - критерия, заключается в том, что дисперсионный анализ более эффективен и, для малых выборок, более информативен.

Управление факторами. Предположим, что в рассмотренном выше примере анализа двух выборок мы добавим еще один фактор, например, Пол - Gender . Пусть каждая группа состоит из 3 мужчин и 3 женщин. План этого эксперимента можно представить в виде таблицы 2 на 2:

Эксперимент. Группа 1 Эксперимент. Группа 2
Мужчины 2 6
3 7
1 5
Среднее 2 6
Женщины 4 8
5 9
3 7
Среднее 4 8

До проведения вычислений, можно заметить, что в этом примере общая дисперсия имеет, по крайней мере, три источника:

(1) случайная ошибка (внутригрупповая дисперсия),

(2) изменчивость, связанная с принадлежностью к экспериментальной группе, и

(3) изменчивость, обусловленная полом объектов наблюдения.

(Отметим, что существует еще один возможный источник изменчивости – взаимодействие факторов , который мы обсудим позднее). Что произойдет, если мы не будем включать пол gender как фактор при проведении анализа и вычислим обычный t -критерий? Если мы будем вычислять суммы квадратов, игнорируя пол – gender (т.е., объединяя объекты разного пола в одну группу при вычислении внутригрупповой дисперсии, получив при этом сумму квадратов для каждой группы равную SS =10, и общую сумму квадратов SS = 10+10 = 20), то получим большее значение внутригрупповой дисперсии, чем при более точном анализе с дополнительным разбиением на подгруппы по полу - gender (при этом внутригрупповые средние будут равны 2, а общая внутригрупповая сумма квадратов равна SS = 2+2+2+2 = 8). Это различие связано с тем, что среднее значение для мужчин - males меньше, чем среднее значение для женщин – female , и это различие в средних значениях увеличивает суммарную внутригрупповую изменчивость, если фактор пола не учитывается. Управление дисперсией ошибки увеличивает чувствительность (мощность) критерия.

На этом примере видно еще одно преимущество дисперсионного анализа по сравнению с обычным t -критерием для двух выборок. Дисперсионный анализ позволяет изучать каждый фактор, управляя значениями остальных факторов. Это, в действительности, и является основной причиной его большей статистической мощности (для получения значимых результатов требуются меньшие объемы выборок). По этой причине дисперсионный анализ даже на небольших выборках дает статистически более значимые результаты, чем простой t - критерий.

Эффекты взаимодействия

Существует еще одно преимущество применения дисперсионного анализа по сравнению с обычным t - критерием: дисперсионный анализ позволяет обнаружить взаимодействие между факторами и, следовательно, позволяет изучать более сложные модели. Для иллюстрации рассмотрим еще один пример.

Главные эффекты, попарные (двухфакторные) взаимодействия. Предположим, что имеется две группы студентов, причем психологически студенты первой группы настроены на выполнение поставленных задач и более целеустремленны, чем студенты второй группы, состоящей из более ленивых студентов. Разобьем каждую группу случайным образом пополам и предложим одной половине в каждой группе сложное задание, а другой - легкое. После этого измерим, насколько напряженно студенты работают над этими заданиями. Средние значения для этого (вымышленного) исследования показаны в таблице:

Какой вывод можно сделать из этих результатов? Можно ли заключить, что: (1) над сложным заданием студенты трудятся более напряженно; (2) целеустремленные студенты работают упорнее, чем ленивые? Ни одно из этих утверждений не отражает сущность систематического характера средних, приведенных в таблице. Анализируя результаты, правильнее было бы сказать, что над сложными заданиями работают упорнее только целеустремленные студенты, в то время как над легкими заданиями только ленивые работают упорнее. Другими словами характер студентов и сложность задания взаимодействуя между собой влияют на затрачиваемое усилие. Это пример парного взаимодействия между характером студентов и сложностью задания. Отметим, что утверждения 1 и 2 описывают главные эффекты .

Взаимодействия высших порядков. В то время как объяснить попарные взаимодействия еще сравнительно легко, взаимодействия высших порядков объяснить значительно сложнее. Представим себе, что в рассматриваемый выше пример, введен еще один фактор пол -Gender и мы получили следующую таблицу средних значений:

Какие теперь выводы можно сделать из полученных результатов? Графики средних позволяют легко интерпретировать сложные эффекты. Модуль дисперсионного анализа позволяет строить эти графики практически одним щелчком мышки.

Изображение на графиках внизу представляет собой изучаемое трехфакторное взаимодействие.

Глядя на графики, можно сказать, что у женщин существует взаимодействие между характером и сложностью теста: целеустремленные женщины работают над трудным заданием более напряженно, чем над легким. У мужчин это же взаимодействие носит обратный характер. Видно, что описание взаимодействия между факторами становится более запутанным.

Общий способ описания взаимодействий. В общем случае взаимодействие между факторами описывается в виде изменения одного эффекта под воздействием другого. В рассмотренном выше примере двухфакторное взаимодействие можно описать как изменение главного эффекта фактора, характеризующего сложность задачи, под воздействием фактора, описывающего характер студента. Для взаимодействия трех факторов из предыдущего параграфа можно сказать, что взаимодействие двух факторов (сложности задачи и характера студента) изменяется под воздействием пола Gender . Если изучается взаимодействие четырех факторов, можно сказать, что взаимодействие трех факторов, изменяется под воздействием четвертого фактора, т.е. существуют различные типы взаимодействий на разных уровнях четвертого фактора. Оказалось, что во многих областях взаимодействие пяти или даже большего количества факторов не является чем-то необычным.

Сложные планы

Межгрупповые и внутригрупповые планы (планы с повторными измерениями)

При сравнении двух различных групп обычно используется t - критерий для независимых выборок (из модуля Основные статистики и таблицы ). Когда сравниваются две переменные на одном и том же множестве объектов (наблюдений), используется t -критерий для зависимых выборок. Для дисперсионного анализа также важно зависимы или нет выборки. Если имеются повторные измерения одних и тех же переменных (при разных условиях или в разное время) для одних и тех же объектов , то говорят о наличии фактора повторных измерений (называемого также внутригрупповым фактором, поскольку для оценки его значимости вычисляется внутригрупповая сумма квадратов). Если сравниваются разные группы объектов (например, мужчины и женщины, три штамма бактерий и т.п.), то разница между группами описывается межгрупповым фактором. Способы вычисления критериев значимости для двух описанных типов факторов различны, но общая их логика и интерпретации совпадает.

Меж- и внутригрупповые планы. Во многих случаях эксперимент требует включение в план и межгруппового фактора, и фактора повторных измерений. Например, измеряются математические навыки студентов женского и мужского пола (где пол – Gender -межгрупповой фактор) в начале и в конце семестра. Два измерения навыковкаждого студента образуют внутригрупповой фактор (фактор повторных измерений). Интерпретация главных эффектов и взаимодействий для межгрупповых факторов и факторов повторных измерений совпадает, и оба типа факторов могут, очевидно, взаимодействовать между собой (например, женщины приобретают навыки в течение семестра, а мужчины их теряют).

Неполные (гнездовые) планы

Во многих случаях можно пренебречь эффектом взаимодействия. Это происходит или когда известно, что в популяции эффект взаимодействия отсутствует, или когда осуществление полного факторного плана невозможно. Например, изучается влияние четырех добавок к топливу на расход горючего. Выбираются четыре автомобиля и четыре водителя. Полный факторный эксперимент требует, чтобы каждая комбинация: добавка, водитель, автомобиль - появились хотя бы один раз. Для этого нужно не менее 4 x 4 x 4 = 64 групп испытаний, что требует слишком больших временных затрат. Кроме того, вряд ли существует взаимодействие между водителем и добавкой к топливу. Принимая это во внимание, можно использовать план Латинские квадраты, в котором содержится лишь16 групп испытаний (четыре добавки обозначаются буквами A, B, C и D):

Латинские квадраты описаны в большинстве книг по планированию экспериментов (например, Hays, 1988; Lindman, 1974; Milliken and Johnson, 1984; Winer, 1962), и здесь они не будут детально обсуждаться. Отметим, что латинские квадраты это не n олные планы, в которых участвуют не все комбинации уровней факторов. Например, водитель 1 управляет автомобилем 1 только с добавкой А, водитель 3 управляет автомобилем 1 только с добавкой С. Уровни фактора добавок (A, B, C и D) вложены в ячейки таблицы автомобиль x водитель – как яйца в гнезда. Это мнемоническое правило полезно для понимания природы гнездовых или вложенных планов. Модуль Дисперсионный анализ предоставляет простые способы анализ планов такого типа.

Ковариационный анализ

Основная идея

В разделе Основные идеи кратко обсуждалась идея управления факторами и то, каким образом включение аддитивных факторов позволяет уменьшать сумму квадратов ошибок и увеличивать статистическую мощность плана. Все это может быть распространено и на переменные с непрерывным множеством значений. Когда такие непрерывные переменные включаются в план в качестве факторов, они называются ковариатами .

Фиксированные ковариаты

Предположим, что сравниваются математические навыки двух групп студентов, которые обучались по двум различным учебникам. Предположим также, что имеются данные о коэффициенте интеллекта (IQ) для каждого студента. Можно предположить, что коэффициент интеллекта связан с математическими навыками, и использовать эту информацию. Для каждой из двух групп студентов можно вычислить коэффициент корреляции между IQ и математическими навыками. Используя этот коэффициент корреляции, можно выделить долю дисперсии в группах, объясняемую влиянием IQ и необъясняемую долю дисперсии (см. также Элементарные понятия статистики (глава 8) и Основные статистики и таблицы (глава 9)). Оставшаяся доля дисперсии используется при проведении анализа как дисперсия ошибки. Если имеется корреляция между IQ и математическими навыками, то можно существенно уменьшить дисперсии ошибки SS /(n -1) .

Влияние ковариат на F- критерий. F- критерий оценивает статистическую значимость различия средних значений в группах, при этом вычисляется отношение межгрупповой дисперсии (MS effect ) к дисперсии ошибок (MS error ) . Если MS error уменьшается, например, при учете фактора IQ, значение F увеличивается.

Множество ковариат. Рассуждения, использованные выше для одной ковариаты (IQ), легко распространяются на несколько ковариат. Например, кроме IQ, можно включить измерение мотивации, пространственного мышления и т.д. Вместо обычного коэффициента корреляции при этом используется множественный коэффициент корреляции.

Когда значение F -критерия уменьшается. Иногда введение ковариат в план эксперимента уменьшает значение F -критерия. Обычно это указывает на то, что ковариаты коррелированы не только с зависимой переменной (например, математическими навыками), но и с факторами (например, с разными учебниками). Предположим, что IQ измеряется в конце семестра, после почти годового обучения двух групп студентов по двум разным учебникам. Хотя студенты разбивались на группы случайным образом, может оказаться, что различие учебников настолько велико, что и IQ и математические навыки в разных группах будут сильно различаться. В этом случае, ковариаты не только уменьшают дисперсию ошибок, но и межгрупповую дисперсию. Другими словами, после контроля за разностью IQ в разных группах, разность в математических навыках уже будет несущественной. Можно сказать иначе. После “исключения” влияния IQ, неумышленно исключается и влияние учебника на развитие математических навыков.

Скорректированные средние. Когда ковариата влияет на межгрупповой фактор, следует вычислять скорректированные средние , т.е. такие средние, которые получаются после удаления всех оценок ковариат.

Взаимодействие между ковариатами и факторами. Также как исследуется взаимодействие между факторами, можно исследовать взаимодействие между ковариатами и между группами факторов. Предположим, что один из учебников особенно подходит для умных студентов. Второй учебник для умных студентов скушен, а для менее умных студентов этот же учебник труден. В результате имеется положительная корреляция между IQ и результатом обучения в первой группе (более умные студенты, лучше результат) и нулевая или небольшая отрицательная корреляция во второй группе (чем умнее студент, тем менее вероятно приобретение математических навыков из второго учебника). В некоторых исследованиях эта ситуация обсуждается как пример нарушения предположений ковариационного анализа. Однако так как в модуле Дисперсионный анализ используются самые общие способы ковариационного анализа, можно, в частности, оценить статистическую значимость взаимодействия между факторами и ковариатами.

Переменные ковариаты

В то время как фиксированные ковариаты обсуждаются в учебниках достаточно часто, переменные ковариаты упоминаются намного реже. Обычно, при проведении экспериментов с повторными измерениями, нас интересуют различия в измерениях одних и тех же величин в разные моменты времени. А именно, нас интересует значимость этих различий. Если одновременно с измерениями зависимых переменных проводится измерение ковариат, можно вычислить корреляцию между ковариатой и зависимой переменной.

Например, можно изучать интерес к математике и математические навыки в начале и в конце семестра. Интересно было бы проверить, коррелированы ли между собой изменения в интересе к математике с изменением математических навыков.

Модуль Дисперсионный анализ в STATISTICA автоматически оценивает статистическую значимость изменения ковариат в тех планах, где это возможно.

Многомерные планы: многомерный дисперсионный и ковариационный анализ

Межгрупповые планы

Все рассматриваемые ранее примеры включали только одну зависимую переменную. Когда одновременно имеется несколько зависимых переменных, возрастает лишь сложность вычислений, а содержание и основные принципы не меняются.

Например, проводится исследование двух различных учебников. При этом изучаются успехи студентов в изучении физики и математики. В этом случае имеются две зависимые переменные и нужно выяснить, как влияют на них одновременно два разных учебника. Для этого можно воспользоваться многомерным дисперсионным анализом (MANOVA). Вместо одномерного F критерия, используется многомерный F критерий (l-критерий Уилкса), основанный на сравнении ковариационной матрицы ошибок и межгрупповой ковариационной матрицы.

Если зависимые переменные коррелированы между собой, то эта корреляция должна учитываться при вычислении критерия значимости. Очевидно, если одно и то же измерение повторяется дважды, то ничего нового получить при этом нельзя. Если к имеющемуся измерению добавляется коррелированное с ним измерение, то получается некоторая новая информация, но при этом новая переменная содержит избыточную информацию, которая отражается в ковариации между переменными.

Интерпретация результатов. Если общий многомерный критерий значим, можно заключить, что соответствующий эффект (например, тип учебника) значим. Однако встают следующие вопросы. Влияет ли тип учебника на улучшение только математических навыков, только физических навыков, или одновременно на улучшение тех и других навыков. В действительности, после получения значимого многомерного критерия, для отдельного главного эффекта или взаимодействия исследуется одномерный F критерий. Другими словами, отдельно исследуются зависимые переменные, которые вносят вклад в значимость многомерного критерия.

Планы с повторными измерениями

Если измеряются математические и физические навыки студентов в начале семестра и в конце, то это и есть повторные измерения. Изучение критерия значимости в таких планах это логическое развитие одномерного случая. Заметим, что методы многомерного дисперсионного анализа обычно также используются для исследования значимости одномерных факторов повторных измерений, имеющих более чем два уровня. Соответствующие применения будут рассмотрены позднее в этой части.

Суммирование значений переменных и многомерный дисперсионный анализ

Даже опытные пользователи одномерного и многомерного дисперсионного анализа часто приходят в затруднение, получая разные результаты при применении многомерного дисперсионного анализа, например, для трех переменных, и при применении одномерного дисперсионного анализа к сумме этих трех переменных, как к одной переменной.

Идея суммирования переменных состоит в том, что каждая переменная содержит в себе некоторую истинную переменную, которая и исследуется, а также случайную ошибку измерения. Поэтому при усреднении значений переменных, ошибка измерения будет ближе к 0 для всех измерений и усредненное значений будет более надежным. На самом деле, в этом случае применение дисперсионного анализа к сумме переменных разумно и является мощным методом. Однако если зависимые переменные по своей природе многомерны, суммирование значений переменных неуместно.

Например, пусть зависимые переменные состоят из четырех показателей успеха в обществе . Каждый показатель характеризует совершенно независимую сторону человеческой деятельности (например, профессиональный успех, преуспеваемость в бизнесе, семейное благополучие и т.д.). Сложение этих переменных подобно сложению яблока и апельсина. Сумма этих переменных не будет подходящим одномерным показателем. Поэтому с такими данными нужно обходится как с многомерными показателями в многомерном дисперсионном анализе .

Анализ контрастов и апостериорные критерии

Почему сравниваются отдельные множества средних?

Обычно гипотезы относительно экспериментальных данных формулируются не просто в терминах главных эффектов или взаимодействий. Примером может служить такая гипотеза: некоторый учебник повышает математические навыки только у студентов мужского пола, в то время как другой учебник примерно одинаково эффективен для обоих полов, но все же менее эффективен для мужчин. Можно предсказать, что эффективность учебника взаимодействует с полом студента. Однако этот прогноз касается также природы взаимодействия. Ожидается значительное различие между полами для обучающихся по одной книге и практически не зависимые от пола результаты для обучающихся по другой книге. Такой тип гипотез обычно исследуется с помощью анализа контрастов.

Анализ контрастов

Если говорить коротко, то анализ контрастов позволяет оценивать статистическую значимость некоторых линейных комбинаций эффектов сложного плана. Анализ контрастов главный и обязательный элемент любого сложного плана дисперсионного анализа. Модуль Дисперсионный анализ имеет достаточно разнообразные возможности анализа контрастов, которые позволяют выделять и анализировать любые типы сравнений средних.

Апостериорные сравнения

Иногда в результате обработки эксперимента обнаруживается неожиданный эффект. Хотя в большинстве случаев творческий исследователь сможет объяснить любой результат, это не дает возможностей для дальнейшего анализа и получения оценок для прогноза. Эта проблема является одной из тех, для которых используются апостериорные критерии , то есть критерии, не использующие априорные гипотезы. Для иллюстрации рассмотрим следующий эксперимент. Предположим, что на 100 карточках записаны числа от 1 до 10. Опустив все эти карточки в шапку, мы случайным образом выбираем 20 раз по 5 карточек, и вычисляем для каждой выборки среднее значение (среднее чисел, записанных на карточки). Можно ли ожидать, что найдутся две выборки, у которых средние значения значимо отличаются? Это очень правдоподобно! Выбирая две выборки с максимальным и минимальным средним, можно получить разность средних, сильно отличающуюся от разности средних, например, первых двух выборок. Эту разность можно исследовать, например, с помощью анализа контрастов. Если не вдаваться в детали, то существует несколько, так называемых апостериорных критериев, которые основаны в точности на первом сценарии (взятие экстремальных средних из 20 выборок), т. е. эти критерии основаны на выборе наиболее отличающихся средних для сравнения всехсредних значений в плане. Эти критерии применяются для того, чтобы чисто случайно не получить искусственный эффект, например, обнаружить значимое различие между средними, когда его нет. Модуль Дисперсионный анализ предлагает широкий выбор таких критериев. Когда в эксперименте, связанном с несколькими группами, встречаются неожиданные результаты, то используются апостериорные процедуры для исследования статистической значимости полученных результатов.

Сумма квадратов типа I, II, III и IV

Многомерная регрессия и дисперсионный анализ

Существует тесная взаимосвязь между методом многомерной регрессии и дисперсионным анализом (анализом вариаций). И в том и в другом методе исследуется линейная модель. Если говорить коротко, то практически все планы эксперимента можно исследовать с помощью многомерной регрессии. Рассмотрим следующий простой межгрупповой 2 x 2 план.

DV A B AxB
3 1 1 1
4 1 1 1
4 1 -1 -1
5 1 -1 -1
6 -1 1 -1
6 -1 1 -1
3 -1 -1 1
2 -1 -1 1

Столбцы А и В содержат коды, характеризующие уровни факторов А и В, столбец АxВ содержит произведение двух столбцов А и В. Мы можем анализировать эти данные с помощью многомерной регрессии. Переменная DV определяется как зависимая переменная, переменные от A до AxB как независимые переменные. Исследование значимости для коэффициентов регрессии будет совпадать с вычислениями в дисперсионном анализе значимости главных эффектов факторов A и B и эффекта взаимодействия AxB .

Несбалансированные и сбалансированные планы

При вычислении корреляционной матрицы для всех переменных, например, для данных, изображенных выше, можно заметить, что главные эффекты факторов A и B и эффект взаимодействия AxB некоррелированы. Это свойство эффектов называют также ортогональностью. Говорят, что эффекты A и B - ортогональны или независимы друг от друга. Если все эффекты в плане ортогональны друг другу, как в приведенном выше примере, то говорят, что план сбалансирован .

Сбалансированные планы обладают “хорошим свойством”. Вычисления при анализе таких планов очень просты. Все вычисления сводятся к вычислению корреляции между эффектами и зависимыми переменными. Так как эффекты ортогональны, частные корреляции (как в полной многомерной регрессии) не вычисляются. Однако в реальной жизни планы не всегда сбалансированы.

Рассмотрим реальные данные с неравным числом наблюдений в ячейках.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 2

Если закодировать эти данные как выше и вычислить корреляционную матрицу для всех переменных, то окажется, что факторы плана коррелированы друг с другом. Факторы в плане теперь не ортогональны и такие планы называются несбалансированными. Заметим, что в рассматриваемом примере, корреляция между факторами полностью связана с различием частот 1 и -1 в столбцах матрицы данных. Другими словами, планы экспериментов с неравными объемами ячеек (точнее, непропорциональными объемами) будут несбалансированными, это означает, что главные эффекты и взаимодействия будут смешиваться. В этом случае для вычисления статистической значимости эффектов нужно полностью вычислять многомерную регрессию. Здесь имеется несколько стратегий.

Сумма квадратов типа I, II, III и IV

Сумма квадратов типа I и III . Для изучения значимости каждого фактора в многомерной модели можно вычислять частную корреляцию каждого фактора, при условии, что все другие факторы уже учтены в модели. Можно также вводить факторы в модель пошаговым способом, фиксируя все факторы, уже введенные в модель и игнорируя все остальные факторы. Вообще, в этом и состоит различие между типом III и типом I суммы квадратов (эта терминология была введена в SAS, см. например, SAS, 1982; подробное обсуждение можно также найти в Searle, 1987, стр. 461; Woodward, Bonett, and Brecht, 1990, стр. 216; или Milliken and Johnson, 1984, стр. 138).

Сумма квадратов типа II. Следующая “промежуточная” стратегия формирования модели состоит: в контроле всех главных эффектов при исследовании значимости отдельного главного эффекта; в контроле всех главных эффектов и всех попарных взаимодействий, когда исследуется значимость отдельного попарного взаимодействия; в контроле всех главных эффектов всех попарных взаимодействий и всех взаимодействий трех факторов; при исследовании отдельного взаимодействия трех факторов и т.д. Суммы квадратов для эффектов, вычисляемые таким способом, называются типом II суммы квадратов. Итак, тип II суммы квадратов контролирует все эффекты того же порядка и ниже, игнорируя все эффекты более высокого порядка.

Сумма квадратов типа IV . Наконец, для некоторых специальных планов с пропущенными ячейками (неполными планами) можно вычислять, так называемые, типа IV суммы квадратов. Этот метод будет обсуждаться позднее в связи с неполными планами (планами с пропущенными ячейками).

Интерпретация гипотезы о сумме квадратов типа I, II, и III

Сумму квадратов типа III легче всего интерпретировать. Напомним, что суммы квадратов типа III исследуют эффекты после контроля всех других эффектов. Например, после нахождения статистически значимого типа III эффекта для фактора A в модуле Дисперсионный анализ , можно сказать, что существует единственный значимый эффект фактора A , после введения всех других эффектов (факторов) и соответственно интерпретировать этот эффект. Вероятно в 99% всех приложений дисперсионного анализа именно этот тип критерия интересует исследователя. Этот тип суммы квадратов обычно вычисляется в модуле Дисперсионный анализ по умолчанию, независимо от того выбрана опция Регрессионный подход или нет (стандартные подходы принятые в модуле Дисперсионный анализ обсуждаются ниже).

Значимые эффекты, полученные с помощью сумм квадратов типа или типа II суммы квадратов интерпретировать не так легко. Лучше всего их интерпретировать в контексте пошаговой многомерной регрессии. Если при использовании суммы квадратов типа I главный эффект фактора В оказался значим (после включения в модель фактора А, но перед добавлением взаимодействия между А и В), можно заключить, что существует значимый главный эффект фактора В, при условии, что нет взаимодействия между факторами А и В. (Если при использовании критерия типа III , фактор В также оказался значимым, то можно заключить, что существует значимый главный эффект фактора B, после введения в модель всех других факторов и их взаимодействий).

В терминах маргинальных средних гипотезы типа I и типа II обычно не имеют простой интерпретации. В этих случаях говорят, что нельзя интерпретировать значимость эффектов, рассматривая только маргинальные средние. Скорее представленные p значений средних имеют отношение к сложной гипотезе, которая комбинирует средние и объем выборки. Например, тип II гипотезы для фактора А в простом примере плана 2 x 2, рассматриваемом ранее будут (см. Woodward, Bonett, and Brecht, 1990, стр. 219):

nij - число наблюдений в ячейке

uij - среднее значение в ячейке

n . j - маргинальное среднее

Если не вдаваться в детали (более подробно см. Milliken and Johnson, 1984, глава 10), то ясно, что это не простые гипотезы и в большинстве случаев ни одна из них не представляет особенного интереса у исследователя. Однако существуют случаи, когда гипотезы типа I могут быть интересны.

Принимаемый по умолчанию вычислительный подход в модуле Дисперсионный анализ

По умолчанию, если не отмечена опция Регрессионный подход , модуль Дисперсионный анализ использует модель средних по ячейкам . Для этой модели характерно, что суммы квадратов для разных эффектов вычисляются для линейных комбинаций средних значений по ячейкам. В полном факторном эксперименте это приводит к суммам квадратов, которые совпадают с суммами квадратов, обсуждаемыми ранее как тип III . Однако в опции Спланированные сравнения (в окне Результаты дисперсионного анализа ), пользователь может проверять гипотезу относительно любой линейной комбинации взвешенных или невзвешенных средних по ячейкам. Таким образом, пользователь может проверять не только гипотезы типа III , но гипотезы любого типа (включая тип IV ). Этот общий подход особенно полезен, когда исследуются планы с пропущенными ячейками (так называемые неполные планы).

Для полных факторных планов этот подход полезно также использовать в тех случаях, когда хотят анализировать взвешенные маргинальные средние. Например, предположим, что в рассматриваемом ранее простом 2 x 2 плане, нужно сравнить взвешенные (по уровням фактора B ) маргинальные средние для фактора А. Это бывает полезным, когда распределение наблюдений по ячейкам не готовилось экспериментатором, а строилось случайно, и эта случайность отражается в распределении числа наблюдений по уровням фактора B в совокупности.

Например, имеется фактор - возраст вдов. Возможная выборка респондентов разбита на две группы: моложе 40 лет и старше 40 (фактор В). Второй фактор (фактор А) в плане - получали или нет социальную поддержку вдовы в некотором агентстве (при этом одни вдовы были выбраны случайно, другие служили в качестве контроля). В этом случае распределение вдов по возрастам в выборке отражает действительное распределение вдов по возрастам в совокупности. Оценке эффективности группы социальной поддержки вдов по всем возрастам будет соответствовать взвешенное среднее для двух возрастных групп (с весами соответствующими числу наблюдений в группе).

Спланированные сравнения

Заметим, что сумма введенных коэффициентов контрастов не обязательно равна 0 (нулю). Вместо этого программа будет автоматически вносить поправки, чтобы соответствующие гипотезы не смешивались с общим средним.

Для иллюстрации этого вернемся опять к простому 2 x 2 плану, рассмотренному ранее. Напомним, что числа наблюдений в ячейках этого несбалансированного плана -1, 2, 3, и 1. Предположим, что мы хотим сравнить взвешенные маргинальные средние для фактора А (взвешенные с частотой уровней фактора В). Можно ввести коэффициенты контраста:

Заметим, что эти коэффициенты не дают в сумме 0. Программа будет устанавливать коэффициенты так, что в сумме они будут давать 0, и при этом будут сохраняться их относительные значения, т. е.:

1/3 2/3 -3/4 -1/4

Эти контрасты будут сравнивать взвешенные средние для фактора А.

Гипотезы о главном среднем. Гипотеза, о том, что не взвешенное главное среднее равно 0 может исследоваться с помощью коэффициентов:

Гипотеза о том, что взвешенное главное среднее равно 0 проверяется с помощью:

Ни в одном случае программа не производит корректировки коэффициентов контрастов.

Анализ планов с пропущенными ячейками (неполные планы)

Факторные планы, содержащие пустые ячейки (обработка комбинаций ячеек, в которых нет наблюдений) называются неполными. В таких планах некоторые факторы обычно не ортогональны и некоторые взаимодействия не могут быть вычислены. Вообще не существует лучшего метода анализа таких планов.

Регрессионный подход

В некоторых старых программах, которые основаны на анализе планов дисперсионного анализа с помощью многомерной регрессии, факторы в неполных планах по умолчанию задаются обычным образом (как будто план полный). Затем производится многомерный регрессионный анализ для этих фиктивно закодированных факторов. К несчастью, этот метод приводит к результатам, которые очень трудно, или даже невозможно, интерпретировать, так как неясно, как каждый эффект участвует в линейной комбинации средних значений. Рассмотрим следующий простой пример.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 Пропущено

Если будет выполняться многомерная регрессия вида Зависимая переменная = Константа + Фактор A + Фактор B , то гипотеза о значимости факторов A и B в терминах линейных комбинаций средних выглядит так:

Фактор A: Ячейка A1,B1 = Ячейка A2,B1

Фактор B: Ячейка A1,B1 = Ячейка A1,B2

Этот случай прост. В более сложных планах невозможно фактически определить, что точно будет исследоваться.

Средние ячеек, подход дисперсионного анализа, гипотезы типа IV

Подход, который рекомендуется в литературе и который кажется предпочтительнее - исследование осмысленных (с точки зрения исследовательских задач) априорных гипотез о средних, наблюдаемых в ячейках плана. Подробное обсуждение этого подхода можно найти в Dodge (1985), Heiberger (1989), Milliken and Johnson (1984), Searle (1987), или Woodward, Bonett, and Brecht (1990). Суммы квадратов, ассоциированные с гипотезами о линейной комбинации средних в неполных планах, исследующие оценки части эффектов, называются также суммами квадратов IV .

Автоматическая генерация гипотез типа IV . Когда многофакторные планы имеют сложный характер пропущенных ячеек, желательно определить ортогональные (независимые) гипотезы, исследование которых эквивалентно исследованию главных эффектов или взаимодействий. Были развиты алгоритмические (вычислительные) стратегии (основанные на псевдообратной матрице плана) для генерирования подходящих весов для таких сравнений. К сожалению, окончательные гипотезы определяются не единственным образом. Конечно, они зависят от порядка, в котором эффекты были определены и редко допускают простую интерпретацию. Поэтому рекомендуется внимательно изучить характер пропущенных ячеек, затем формулировать гипотезы типа IV , которые наиболее содержательно соответствуют целям исследования. Затем исследовать эти гипотезы, используя опцию Спланированные сравнения в окне Результаты . Самый легкий путь задать сравнения в этом случае - требовать введения вектора контрастов для всех факторов вместе в окне Спланированные сравнения. После вызова диалогового окна Спланированные сравнения будут показаны все группы текущего плана и помечены те, которые пропущены.

Пропущенные ячейки и проверка специфического эффекта

Существует несколько типов планов, в которых расположение пропущенных ячеек не случайно, но тщательно спланировано, что позволяет проводить простой анализ главных эффектов не затрагивая другие эффекты. Например, когда необходимое число ячеек в плане недоступно, часто используются планы Латинские квадраты для оценивания главных эффектов нескольких факторов с большим числом уровней. Например, 4 x 4 x 4 x 4 факторный план требует 256 ячеек. В то же время можно использовать Греко-латинский квадрат для оценки главных эффектов, имея только 16 ячеек в плане (глава Планирование эксперимента , том IV, содержит детальное описание таких планов). Неполные планы, в которых главные эффекты (и некоторые взаимодействия) могут быть оценены с помощью простых линейных комбинаций средних, называются сбалансированными неполными планами .

В сбалансированных планах стандартный (по умолчанию) метод генерирования контрастов (весов) для главных эффектов и взаимодействий будет затем производить анализ таблицы дисперсий, в которой суммы квадратов для соответствующих эффектов не смешиваются друг с другом. Опция Специфический эффекты окна Результаты будет генерировать пропущенные контрасты, записывая ноль в пропущенные ячейки плана. Сразу после того, как будет запрошена опция Специфический эффекты для пользователя, изучающего некоторую гипотезу, появляется таблица результатов с фактическими весами. Заметим, что в сбалансированном плане, суммы квадратов соответствующих эффектов вычисляются только, если эти эффекты ортогональны (независимы) всем другим главным эффектам и взаимодействиям. В противном случае нужно воспользоваться опцией Спланированные сравнения для изучения содержательных сравнений между средними.

Пропущенные ячейки и объединенные эффекты/члены ошибки

Если опция Регрессионное подход в стартовой панели модуля Дисперсионный анализ не выбрана, то при вычислении суммы квадратов для эффектов будет использоваться модель средних по ячейкам (установка по умолчанию). Если план не сбалансирован, то при объединении неортогональных эффектов (см. выше обсуждение опции Пропущенные ячейки и специфический эффект ) можно получить сумму квадратов, состоящую из неортогональных (или перекрывающихся) компонент. Полученные при этом результаты, обычно не интерпретируемы. Поэтому нужно быть очень осторожным при выборе и реализации сложных неполных экспериментальных планов.

Существует много книг с детальным обсуждением планов разного типа. (Dodge, 1985; Heiberger, 1989; Lindman, 1974; Milliken and Johnson, 1984; Searle, 1987; Woodward and Bonett, 1990), но такого рода информация лежит вне границ этого учебника. Тем не менее, позднее в этом разделе будет продемонстрирован анализ различного типа планов.

Предположения и эффекты нарушения предположений

Отклонение от предположения о нормальности распределений

Предположим, что зависимая переменная измерена в числовой шкале. Предположим также, что зависимая переменная имеет нормальное распределение внутри каждой группы. Дисперсионный анализ содержит широкий набор графиков и статистик для обоснования этого предположения.

Эффекты нарушения. Вообще F критерий очень устойчив к отклонению от нормальности (подробные результаты см. в работе Lindman, 1974). Если эксцесс больше 0, то значение статистики F может стать очень маленьким. Нулевая гипотеза при этом принимается, хотя она может быть и не верна. Ситуация меняется на противоположную, когда эксцесс меньше 0. Асимметрия распределения обычно незначительно влияет на F статистику. Если число наблюдений в ячейке достаточно большое, то отклонение от нормальности не имеет особого значения в силу центральной предельной теоремы , в соответствии с которой, распределение среднего значения близко к нормальному, независимо от начального распределения. Подробное обсуждение устойчивости F статистики можно найти в Box and Anderson (1955), или Lindman (1974).

Однородность дисперсии

Предположения. Предполагается, что дисперсии разных групп плана одинаковы. Это предположение называется предположением об однородности дисперсии. Вспомним, что в начале этого раздела, описывая вычисление суммы квадратов ошибок, мы производили суммирование внутри каждой группы. Если дисперсии в двух группах отличаются друг от друга, то сложение их не очень естественно и не дает оценки общей внутригрупповой дисперсии (так как в этом случае общей дисперсии вообще не существует). Модуль Дисперсионный анализ - ANOVA /MANOVA содержит большой набор статистических критериев обнаружения отклонения от предположений однородности дисперсии.

Эффекты нарушения. Линдман (Lindman 1974, стр. 33) показывает, что F критерий вполне устойчив относительно нарушения предположений однородности дисперсии (неоднородность дисперсии, см. также Box, 1954a, 1954b; Hsu, 1938).

Специальный случай: коррелированность средних и дисперсий. Бывают случаи, когда F статистика может вводить в заблуждение. Это бывает, когда в ячейках плана средние значения коррелированы с дисперсией. Модуль Дисперсионный анализ позволяет строить диаграммы рассеяния дисперсии или стандартного отклонения относительно средних для обнаружения такой корреляции. Причина, по которой такая корреляция опасна, состоит в следующем. Представим себе, что имеется 8 ячеек в плане, 7 из которых имеют почти одинаковое среднее, а в одной ячейке среднее намного больше остальных. Тогда F критерий может обнаружить статистически значимый эффект. Но предположим, что в ячейке с большим средним значением и дисперсия значительно больше остальных, т.е. среднее значение и дисперсия в ячейках зависимы (чем больше среднее, тем больше дисперсия). В этом случае большое среднее значение ненадежно, так как оно может быть вызвано большой дисперсией данных. Однако F статистика, основанная на объединенной дисперсии внутри ячеек, будет фиксировать большое среднее, хотя критерии, основанные на дисперсии в каждой ячейке, не все различия в средних будут считать значимыми.

Такой характер данных (большое среднее и большая дисперсия) - часто встречается, когда имеются резко выделяющиеся наблюдения. Одно или два резко выделяющихся наблюдений сильно смещают среднее значение и очень увеличивают дисперсию.

Однородность дисперсии и ковариаций

Предположения. В многомерных планах, с многомерными зависимыми измерениями, также применяются предположение об однородности дисперсии, описанные ранее. Однако так как существуют многомерные зависимые переменные, то требуется так же чтобы их взаимные корреляции (ковариации) были однородны по всем ячейкам плана. Модуль Дисперсионный анализ предлагает разные способы проверки этих предположений.

Эффекты нарушения . Многомерный аналог F - критерия - λ-критерий Уилкса. Не так много известно об устойчивости (робастности) λ-критерия Уилкса относительно нарушения указанных выше предположений. Тем не менее, так как интерпретация результатов модуля Дисперсионный анализ основывается обычно на значимости одномерных эффектов (после установления значимости общего критерия), обсуждение робастности касается, в основном, одномерного дисперсионного анализа. Поэтому должна быть внимательно исследована значимость одномерных эффектов.

Специальный случай: ковариационный анализ. Особенно серьезные нарушения однородности дисперсии/ковариаций могут происходить, когда в план включаются ковариаты. В частности, если корреляция между ковариатами и зависимыми измерениями различна в разных ячейках плана, может последовать неверное истолкование результатов. Следует помнить, что в ковариационном анализе, в сущности, проводится регрессионный анализ внутри каждой ячейки для того, чтобы выделить ту часть дисперсии, которая соответствует ковариате. Предположение об однородности дисперсии/ковариации предполагает, что этот регрессионный анализ проводится при следующем ограничении: все регрессионные уравнения (наклоны) для всех ячеек одинаковы. Если это не предполагается, то могут появиться большие ошибки. Модуль Дисперсионный анализ имеет несколько специальных критериев для проверки этого предположения. Можно посоветовать использовать эти критерии, для того, чтобы убедиться, что регрессионные уравнения для различных ячеек примерно одинаковы.

Сферичность и сложная симметрия: причины использования многомерного подхода к повторным измерениям в дисперсионном анализе

В планах, содержащих факторы повторных измерений с более чем двумя уровнями, применение одномерного дисперсионного анализа требует дополнительных предположений: предположения о сложной симметрии и предположения о сферичности. Эти предположения редко выполняются (см. ниже). Поэтому в последние годы многомерный дисперсионный анализ завоевал популярность в таких планах (оба подхода совмещены в модуле Дисперсионный анализ ).

Предположение о сложной симметрии Предположение о сложной симметрии состоит в том, что дисперсии (общие внутригрупповые) и ковариации (по группам) для различных повторных измерений однородны (одинаковы). Это достаточное условие для того, чтобы одномерный F критерий для повторных измерений был обоснованным (т.е. выданные F-значения в среднем соответствовали F-распределению). Однако в данном случае это условие не является необходимым.

Предположение о сферичности. Предположение о сферичности является необходимым и достаточным условием того, чтобы F-критерий был обоснованным. Оно состоит в том, что внутри групп все наблюдения независимы и одинаково распределены. Природа этих предположений, а также влияние их нарушений обычно не очень хорошо описаны в книгах по дисперсионному анализу - эта будет описано в следующих параграфах. Там же будет показано, что результаты одномерного подхода могут отличаться от результатов многомерного подхода, и будет объяснено, что это означает.

Необходимость независимости гипотез. Общий способ анализа данных в дисперсионном анализе – это подгонка модели . Если относительно модели, соответствующей данным, имеются некоторые априорные гипотезы, то дисперсия разбивается для проверки этих гипотез (критерии главных эффектов, взаимодействий). С точки зрения вычислений, этот подход генерирует некоторое множество контрастов (множество сравнений средних в плане). Однако если контрасты не независимы друг от друга, разбиение дисперсий становится бессодержательным. Например, если два контраста A и B тождественны и выделяется соответствующая им часть из дисперсии, то одна и та же часть выделяется дважды. Например, глупо и бессмысленно выделять две гипотезы: “среднее в ячейке 1 выше среднего в ячейке 2” и “среднее в ячейке 1 выше среднего в ячейке 2”. Итак, гипотезы должны быть независимы или ортогональны.

Независимые гипотезы при повторных измерениях. Общий алгоритм, реализованный в модуле Дисперсионный анализ , будет пытаться для каждого эффекта генерировать независимые (ортогональные) контрасты. Для фактора повторных измерений эти контрасты задают множество гипотез относительно разностей между уровнями рассматриваемого фактора. Однако если эти разности коррелированы внутри групп, то результирующие контрасты не являются больше независимыми. Например, в обучении, где обучающиеся измеряются три раза за один семестр, может случиться, что изменения между 1 и 2 измерением отрицательно коррелируют с изменением между 2 и 3 измерениями субъектов. Те, кто большую часть материала освоил между 1 и 2 измерениями, осваивают меньшую часть в течение того времени, которое прошло между 2 и 3 измерением. В действительности, для большинства случаев, где дисперсионный анализ используются при повторных измерениях, можно предположить, что изменения по уровням коррелированы по субъектам. Однако когда это случается, предположение о сложной симметрии и предположения о сферичности не выполняются и независимые контрасты не могут быть вычислены.

Влияние нарушений и способы их исправления. Когда предположения о сложной симметрии или о сферичности не выполняются, дисперсионный анализ может выдать ошибочные результаты. До того, как были достаточно разработаны многомерные процедуры, было предложено несколько предположений для компенсации нарушений этих предположений. (см., например, работы Greenhouse & Geisser, 1959 и Huynh & Feldt, 1970). Эти методы до сих пор широко используются (поэтому они представлены в модуле Дисперсионный анализ ).

Подход многомерного дисперсионного анализа к повторным измерениям. В целом проблемы сложной симметрии и сферичности относятся к тому факту, что множества контрастов, включенных в исследование эффектов факторов повторных измерений (с числом уровней большим, чем 2) не независимы друг от друга. Однако им не обязательно быть независимыми, если используется многомерный критерий для одновременной проверки статистического значимости двух или более контрастов фактора повторных измерений. Это является причиной того, что методы многомерного дисперсионного анализа стали чаще использоваться для проверки значимости факторов одномерных повторных измерений с более чем 2 уровнями. Этот подход широко распространен, так как он, в общем случае, не требует предположения о сложной симметрии и предположения о сферичности.

Случаи, в которых подходмногомерного дисперсионного анализа не может быть использован. Существуют примеры (планы), когда подход многомерного дисперсионного анализа не может быть применен. Обычно это случаи, когда имеется небольшое количество субъектов в плане и много уровней в факторе повторных измерений. Тогда для проведения многомерного анализа может быть слишком мало наблюдений. Например, если имеется 12 субъектов, p = 4 фактора повторных измерений, и каждый фактор имеет k = 3 уровней. Тогда взаимодействие 4-х факторов будет “расходовать”(k -1)P = 2 4 = 16 степеней свободы. Однако имеется лишь 12 субъектов, следовательно, в этом примере многомерный тест не может быть проведен. Модуль Дисперсионный анализ самостоятельно обнаружит эти наблюдения и вычислит только одномерные критерии.

Различия в одномерных и многомерных результатах. Если исследование включает большое количество повторных измерений, могут возникнуть случаи, когда одномерный подход дисперсионного анализа к повторным измерениям дает результаты, сильно отличающиеся от тех, которые были получены при многомерном подходе. Это означает, что разности между уровнями соответствующих повторных измерений коррелированы по субъектам. Иногда этот факт представляет некоторый самостоятельный интерес.

Многомерный дисперсионный анализ и структурное моделирование уравнений

В последние годы моделирование структурных уравнений стало популярным, как альтернатива многомерному анализу дисперсии (см. например, Bagozzi and Yi, 1989; Bagozzi, Yi, and Singh, 1991; Cole, Maxwell, Arvey, and Salas, 1993). Этот подход позволяет проверять гипотезы не только о средних в разных группах, но так же и о корреляционных матрицах зависимых переменных. Например, можно ослабить предположения об однородности дисперсии и ковариаций и явно включить в модель для каждой группы дисперсии и ковариации ошибки. Модуль STATISTICA Моделирование структурными уравнениями (SEPATH ) (см. том III) позволяет проводить такой анализ.

В практической деятельности врачей при проведении медико-биологических, социологических и экспериментальных исследований возникает необходимость установить влияние факторов на результаты изучения состояния здоровья населения, при оценке профессиональной деятельности, эффективности нововведений.

Существует ряд статистических методов, позволяющих определить силу, направление, закономерности влияния факторов на результат в генеральной или выборочной совокупностях (расчет критерия I, корреляционный анализ, регрессия, Χ 2 - (критерий согласия Пирсона и др.). Дисперсионный анализ был разработан и предложен английским ученым, математиком и генетиком Рональдом Фишером в 20-х годах XX века.

Дисперсионный анализ чаще используют в научно-практических исследованиях общественного здоровья и здравоохранения для изучения влияния одного или нескольких факторов на результативный признак. Он основан на принципе "отражения разнообразий значений факторного(ых) на разнообразии значений результативного признака" и устанавливает силу влияния фактора(ов) в выборочных совокупностях.

Сущность метода дисперсионного анализа заключается в измерении отдельных дисперсий (общая, факториальная, остаточная), и дальнейшем определении силы (доли) влияния изучаемых факторов (оценки роли каждого из факторов, либо их совместного влияния) на результативный(е) признак(и).

Дисперсионный анализ - это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)- средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.

Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.

Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.

Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.

Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).

Факторные признаки - это те признаки, которые влияют на изучаемое явление.
Результативные признаки - это те признаки, которые изменяются под влиянием факторных признаков.

Для проведения дисперсионного анализа могут использоваться как качественные (пол, профессия), так и количественные признаки (число инъекций, больных в палате, число койко-дней).

Методы дисперсионного анализа:

  1. Метод по Фишеру (Fisher) - критерий F (значения F см. в приложении N 1);
    Метод применяется в однофакторном дисперсионном анализе, когда совокупная дисперсия всех наблюдаемых значений раскладывается на дисперсию внутри отдельных групп и дисперсию между группами.
  2. Метод "общей линейной модели".
    В его основе лежит корреляционный или регрессионный анализ, применяемый в многофакторном анализе.

Обычно в медико-биологических исследованиях используются только однофакторные, максимум двухфакторные дисперсионные комплексы. Многофакторные комплексы можно исследовать, последовательно анализируя одно- или двухфакторные комплексы, выделяемые из всей наблюдаемой совокупности.

Условия применения дисперсионного анализа:

  1. Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).
  2. Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.
  3. Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. - random), т.е. выбранные наугад.
  4. Можно применять как количественные, так и качественные (атрибутивные) признаки.

При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):

  1. Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.
  2. Независимость (не связанность) распределения наблюдений в группах.
  3. Наличие частоты (повторность) наблюдений.

Нормальность распределения определяется кривой Гаусса (Де Мавура), которую можно описать функцией у = f(х), так как она относится к числу законов распределения, используемых для приближенного описания явлений, которые носят случайный, вероятностный характер. Предмет медико-биологических исследований - явления вероятностного характера, нормальное распределение в таких исследованиях встречается весьма часто.

Принцип применения метода дисперсионного анализа

Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.

Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.

Если эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.
__________________________________
* Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают α = 0,05.

При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

D oбщ. = D факт + D ост. ,

D oбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

D факт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков - наблюдается межгрупповое разнообразие.

D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака - фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).

Классический дисперсионный анализ проводится по следующим этапам:

  1. Построение дисперсионного комплекса.
  2. Вычисление средних квадратов отклонений.
  3. Вычисление дисперсии.
  4. Сравнение факторной и остаточной дисперсий.
  5. Оценка результатов с помощью теоретических значений распределения Фишера-Снедекора (приложение N 1).

АЛГОРИТМ ПРОВЕДЕНИЯ ДИСПЕРСИОННОГО АНАЛИЗА ПО УПРОЩЕННОМУ ВАРИАНТУ

Алгоритм проведения дисперсионного анализа по упрощенному способу позволяет получить те же результаты, но расчеты выполняются значительно проще:

I этап. Построение дисперсионного комплекса

Построение дисперсионного комплекса означает построение таблицы, в которой были бы четко разграничены факторы, результативный признак и подбор наблюдений (больных) в каждую группу.

Однофакторный комплекс состоит из нескольких градаций одного фактора (А). Градации - это выборки из разных генеральных совокупностей (А1, А2, АЗ).

Двухфакторный комплекс - состоит из нескольких градаций двух факторов в комбинации между собой. Этиологические факторы заболеваемостью пневмонией те же (А1, А2, АЗ) в сочетании с разными формами клинического течения пневмонии (Н1 - острое, Н2 - хроническое).

Результативный признак (количество койко-дней в среднем) Этиологические факторы развития пневмоний
А1 А2 А3
Н1 Н2 Н1 Н2 Н1 Н2
М = 14 дней

II этап. Вычисление общей средней (М обш)

Вычисление суммы вариант по каждой градации факторов: Σ Vj = V 1 + V 2 + V 3

Вычисление общей суммы вариант (Σ V общ) по всем градациям факторного признака: Σ V общ = Σ Vj 1 + Σ Vj 2 + Σ Vj 3

Вычисление средней групповой (М гр.) факторного признака: М гр. = Σ Vj / N,
где N - сумма числа наблюдений по всем градациям факторного I признака (Σn по группам).

III этап. Расчет дисперсий:

При соблюдении всех условий применения дисперсионного анализа математическая формула выглядит следующим образом:

D oбщ. = D факт + D ост.

D oбщ. - общая дисперсия, характеризуется разбросом вариант (наблюдаемых значений) от общего среднего;
D факт. - факторная (межгрупповая) дисперсия, характеризует разброс групповых средних от общего среднего;
D ост. - остаточная (внутригрупповая) дисперсия, характеризует рассеяние вариант внутри групп.

  1. Вычисление факториальной дисперсии (D факт.): D факт. = Σ h - H
  2. Вычисление h проводится по формуле: h = (Σ Vj) / N
  3. Вычисление Н проводится по формуле: H = (Σ V) 2 / N
  4. Вычисление остаточной дисперсии: D ост. = (Σ V) 2 - Σ h
  5. Вычисление общей дисперсии: D oбщ. = (Σ V) 2 - Σ H

IV этап. Расчет основного показателя силы влияния изучаемого фактора Показатель силы влияния (η 2) факторного признака на результат определяется долей факториальной дисперсии (D факт.) в общей дисперсии (D oбщ.), η 2 (эта) - показывает какую долю занимает влияние изучаемого фактора среди всех других факторов и определяется по формуле:

V этап. Определение достоверности результатов исследования методом Фишера проводят по формуле:


F - критерий Фишера;
F st. - табличное значение (см.приложение 1).
σ 2 факт, σ 2 ост. - факториальная и остаточная девиаты (от лат. de - от, via - дорога) - отклонение от средней линии, определяются по формулам:


r - число градаций факторного признака.

Сравнение критерия Фишера (F) со стандартным (табличным) F проводят по графам таблицы с учетом степеней свободы:

v 1 = n - 1
v 2 = N - 1

По горизонтали определяют v 1 по вертикали - v 2 , на их пересечении определяют табличное значение F, где верхнее табличное значение р ≥ 0,05, а нижнее соответствует р > 0,01, и сравнивают с вычисленным критерием F. Если значение вычисленного критерия F равно или больше табличного, то результаты достоверны и Н 0 не отвергается.

Условие задачи:

На предприятии Н. повысился уровень травматизма в связи с чем врач провел исследование отдельных факторов, среди которых изучался стаж работы работающих в цехах. Выборки сделаны на предприятии Н. из 4 цехов с близкими условиями и характером труда. Уровни травматизма рассчитаны на 100 работающих за прошлый год.

При исследовании фактора рабочего стажа получены следующие данные:

На основании данных проведённого исследования была выдвинута нулевая гипотеза (Н 0) о влиянии стажа работы на уровень травматизма работников предприятия А.

Задание
Подтвердите или опровергните нулевую гипотезу методом одно-факторного дисперсионного анализа:

  1. определите силу влияния;
  2. оцените достоверность влияния фактор.

Этапы применения дисперсионного анализа
для определения влияния фактора (стажа работы) на результат (уровень травматизма)

Вывод. В выборочном комплексе выявлено, что сила влияния стажа работы на уровень травматизма составляет 80% в общем числе других факторов. Для всех цехов завода можно с вероятностью 99,7% (13,3 > 8,7) утверждать, что стаж работы влияет на уровень травматизма.

Таким образом, нулевая гипотеза (Н 0) не отвергается и влияние стажа работы на уровень травматизма в цехах завода А считается доказанным.

Значение F (критерий Фишера) стандартного при р ≥ 0,05 (верхнее значение) при р ≥ 0,01 (нижнее значение)

1 2 3 4 5 6 7 8 9 10 11
6 6,0
13,4
5,1
10,9
4,8
9,8
4,5
9,2
4,4
8,8
4,3
8,5
4,2
8,3
4,1
8,1
4,1
8,0
4,1
7,9
4,0
7,8
7 5,6
12,3
4,7
9,6
4,4
8,5
4,1
7,9
4,0
7,5
3,9
7,2
3,8
7,0
3,7
6,8
3,7
6,7
3,6
6,6
3,6
6,5
8 5,3
11,3
4,6
8,7
4,1
7,6
3,8
7,0
3,7
6,6
3,6
6,4
3,5
6,2
3,4
6,0
3,4
5,9
3,3
5,8
3,1
5,7
9 5,1
10,6
4,3
8,0
3,6
7,0
3,6
6,4
3,5
6,1
3,4
5,8
3,3
5,6
3,2
5,5
3,2
5,4
3,1
5,3
3,1
5,2
10 5,0
10,0
4,1
7,9
3,7
6,6
3,5
6,0
3,3
5,6
3,2
5,4
3,1
5,2
3,1
5,1
3,0
5,0
2,9
4,5
2,9
4,8
11 4,8
9,7
4,0
7,2
3,6
6,2
3,6
5,7
3,2
5,3
3,1
5,1
3,0
4,9
3,0
4,7
2,9
4,6
2,9
4,5
2,8
4,5
12 4,8
9,3
3,9
6,9
3,5
6,0
3,3
5,4
3,1
5,1
3,0
4,7
2,9
4,7
2,9
4,5
2,8
4,4
2,8
4,3
2,7
4,2
13 4,7
9,1
3,8
6,7
3,4
5,7
3,2
5,2
3,0
4,9
2,9
4,6
2,8
4,4
2,8
4,3
2,7
4,2
2,7
4,1
2,6
4,0
14 4,6
8,9
3,7
6,5
3,3
5,6
3,1
5,0
3,0
4,7
2,9
4,5
2,8
4,3
2,7
4,1
2,7
4,0
2,6
3,9
2,6
3,9
15 4,5
8,7
3,7
6,4
3,3
5,4
3,1
4,9
2,9
4,6
2,8
4,3
2,7
4,1
2,6
4,0
2,6
3,9
2,5
3,8
2,5
3,7
16 4,5
8,5
3,6
6,2
3,2
5,3
3,0
4,8
2,9
4,4
2,7
4,2
2,7
4,0
2,6
3,9
2,5
3,8
2,5
3,7
2,5
3,6
17 4,5
8,4
3,6
6,1
3,2
5,2
3,0
4,7
2,8
4,3
2,7
4,1
2,6
3,9
2,6
3,8
2,5
3,8
2,5
3,6
2,4
3,5
18 4,4
8,3
3,5
6,0
3,2
5,1
2,9
4,6
2,8
4,2
2,7
4,0
2,6
3,8
2,5
3,7
2,7
3,6
2,4
3,6
3,4
3,5
19 4,4
8,2
3,5
5,9
3,1
5,0
2,9
4,5
2,7
4,2
2,6
3,9
2,5
3,8
2,5
3,6
2,4
3,5
2,4
3,4
2,3
3,4
20 4,3
8,1
3,5
5,8
3,1
4,9
2,9
4,4
2,7
4,1
2,6
3,9
2,5
3,7
2,4
3,6
2,4
3,4
2,3
3,4
2,3
3,3

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. 464 с.
  2. Архипова ГЛ., Лаврова И.Г., Трошина И.М. Некоторые современные методы статистического анализа в медицине. - М.: Метроснаб, 1971. - 75 с.
  3. Зайцев В.М., Лифляндский В.Г., Маринкин В.И. Прикладная медицинская статистика. - СПб.: ООО "Издательство ФОЛИАНТ", 2003. - 432 с.
  4. Платонов А.Е. Статистический анализ в медицине и биологии: задачи, терминология, логика, компьютерные методы. - М.: Издательство РАМН, 2000. - 52 с.
  5. Плохинский Н.А. Биометрия. - Издательство Сибирского отделения АН СССР Новосибирск. - 1961. - 364 с.

Дисперсионный анализ (от латинского Dispersio – рассеивание / на английском Analysis Of Variance - ANOVA) применяется для исследования влияния одной или нескольких качественных переменных (факторов) на одну зависимую количественную переменную (отклик).

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные): , а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках , дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).

Сущность дисперсионного анализа заключается в расчленении общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и проверке гипотез о значимости влияния этих факторов на исследуемый признак. Сравнивая компоненты дисперсии друг с другом посредством F-критерия Фишера , можно определить, какая доля общей вариативности результативного признака обусловлена действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок : , которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых факторов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты эксперимента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным .

Дисперсионный анализ используют, если зависимая переменная измеряется в шкале отношений, интервалов или порядка, а влияющие переменные имеют нечисловую природу (шкала наименований).

Примеры задач

В задачах, которые решаются дисперсионным анализом, присутствует отклик числовой природы, на который воздействует несколько переменных, имеющих номинальную природу. Например, несколько видов рационов откорма скота или два способа их содержания и т.п.

Пример 1: В течение недели в трех разных местах работало несколько аптечных киосков. В дальнейшем мы можем оставить только один. Необходимо определить, существует ли статистически значимое отличие между объемами реализации препаратов в киосках. Если да, мы выберем киоск с наибольшим среднесуточным объемом реализации. Если же разница объема реализации окажется статистически незначимой, то основанием для выбора киоска должны быть другие показатели.

Пример 2: Cравнение контрастов групповых средних. Семь политических пристрастий упорядочены от крайне либеральные до крайне консервативные, и линейный контраст используется для проверки того, есть ли отличная от нуля тенденция к возрастанию средних значений по группам - т. е. есть ли значимое линейное увеличение среднего возраста при рассмотрении групп, упорядоченных в направлении от либеральных до консервативных.

Пример 3: Двухфакторный дисперсионный анализ. На количество продаж товара, помимо размеров магазина, часто влияет расположение полок с товаром. Данный пример содержит показатели недельных продаж, характеризуемые четырьмя типами расположения полок и тремя размерами магазинов. Результаты анализа показывают, что оба фактора - расположение полок с товаром и размер магазина -влияют на количество продаж, однако их взаимодействие значимым не является.

Пример 4: Одномерный ANOVA: Рандомизированный полноблочный план с двумя обработками. Исследуется влияние на припек хлеба всех возможных комбинаций трех жиров и трех рыхлителей теста. Четыре образца муки, взятые из четырех разных источников, служили в качестве блоковых факторов.Необходимо выявить значимость взаимодействия жир-рыхлитель. После этого определить различные возможности выбора контрастов, позволяющих выяснить, какие именно комбинации уровней факторов различаются.

Пример 5: Модель иерархического (гнездового) плана с смешанными эффектами. Изучается влияние четырех случайно выбранных головок, вмонтированных в станок, на деформацию производимых стеклянных держателей катодов. (Головки вмонтированы в станок, так что одна и та же головка не может использоваться на разных станках). Эффект головки обрабатывается как случайный фактор. Статистики ANOVA показывают, что между станками нет значимых различий, но есть признаки того, что головки могут различаться. Различие между всеми станками не значимо, но для двух из них различие между типами головок значимо.

Пример 6: Одномерный анализ повторных измерений с использованием плана расщепленных делянок. Этот эксперимент проводился для определения влияния индивидуального рейтинга тревожности на сдачу экзамена в четырех последовательных попытках. Данные организованы так, чтобы их можно было рассматривать как группы подмножеств всего множества данных ("всей делянки"). Эффект тревожности оказался незначимым, а эффект попытки - значим.

Перечень методов

  • Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач ; факторы, влияющие на объёмы продаж .

Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности:

  • Однофакторная параметрическая модель : метод Шеффе .
  • Однофакторная непараметрическая модель [Лагутин М.Б., 237]: критерий Краскела-Уоллиса [Холлендер М., Вульф Д.А., 131], критерий Джонкхиера [Лагутин М.Б., 245].
  • Общий случай модели с постоянными факторами, теорема Кокрена [Афифи А., Эйзен С., 234].

Данные представляют собой двухкратные повторные наблюдения:

  • Двухфакторная непараметрическая модель : критерий Фридмана [Лапач, 203], критерий Пейджа [Лагутин М.Б., 263]. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
  • Двухфакторная непараметрическая модель для неполных данных

История

Откуда произошло название дисперсионный анализ ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. Первоначально дисперсионный анализ был разработан для обработки данных, полученных в ходе специально поставленных экспериментов, и считался единственным методом, корректно исследующим причинные связи. Метод применялся для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Литература

  1. Шеффе Г. Дисперсионный анализ. - М., 1980.
  2. Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
  3. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  4. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. - Киев: Морион, 2002.
  5. Лагутин М. Б. Наглядная математическая статистика. В двух томах. - М.: П-центр, 2003.
  6. Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ.
  7. Холлендер М., Вульф Д.А. Непараметрические методы статистики.

Ссылки

  • Дисперсионный анализ - Электронный учебник StatSoft.

Дисперсионный анализ – статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов.

Первоначально (1918г.) дисперсионный анализ был разработан английским математиком – статистиком Р.А. Фишером для обработки результатов агрономических опытов по выявлению условий получения максимального урожая различных сортов сельскохозяйственных культур.

При постановке опыта необходимо соблюдение условий:

    Каждый вариант опыта необходимо проводить на нескольких единицах наблюдения (групп животных, участков поля и т.п.)

    Распределение единиц наблюдения между вариантами опыта должно быть случайным, а не преднамеренным.

В дисперсионном анализе используется F -критерий (критерий Р.А. Фишера), представляющий отношение двух дисперсий:

где d факт, d ост – факторная (межгрупповая) и остаточная (внутригрупповая) дисперсии на одну степень свободы соответственно.

Факторная и остаточная дисперсии являются оценками дисперсии совокупности, рассчитываются по выборочным данным с учетом числа степеней свободы вариации.

Факторная (межгрупповая) дисперсия объясняет вариацию результативного признака под влиянием изучаемого фактора.

Остаточная (внутригрупповая) дисперсия объясняет вариацию результативного признака, обусловленную влиянием прочих факторов (за исключением влияния изучаемого фактора).

В сумме факторная и остаточная дисперсии дают общую дисперсию, выражающую влияние всех факторных признаков на результативный.

Порядок проведения дисперсионного анализа:

1. Опытные данные заносятся в расчетную таблицу и определяются суммы и средние значения в каждой группе изучаемой совокупности, а также общая сумма и среднее значение по всей совокупности (табл.1).

Таблица 1

Значение результативного признака для i-й единицы

в j-й группе, x ij

Число наблюдений, f j

Средние (групповые и общая), х j

x 11 , x 12 , …, х 1 n

х 21 , х 22 , …, х 2 n

х m 1 , х m 2 , …, х mn

Общее количество наблюдений n рассчитывается как сумма числа наблюдений f j в каждой группе:

Если во всех группах число элементов одинаковое, то общая средняя находится из групповых средних как простая средняя арифметическая:

Если же число элементов в группах разное, то общая средняя рассчитывается по формуле средней арифметической взвешенной:

2. Определяется общая дисперсия D общ как сумма квадратов отклонений индивидуальных значений результативного признака от общей средней :

3. Рассчитывается факторная (межгрупповая) дисперсия D факт как сумма квадратов отклонений групповых средних от общей средней , умноженных на число наблюдений:

4. Определяется величина остаточной (внутригрупповой) дисперсии D ост как разность между общей D общ и факторной D факт дисперсиями:

5. Рассчитываются число степеней свободы факторной
дисперсии как разница между числом группm и единицей:

6. Определяется число степеней свободы для остаточной дисперсии
как разница между количеством индивидуальных значений признакаn и числом групп m :

7. Рассчитывается величина факторной дисперсии на одну степень свободы d факт как отношение факторной дисперсии D факт к числу степеней свободы факторной дисперсии
:

8. Определяется величина остаточной дисперсии на одну степень свободыd ост как отношение остаточной дисперсии D ост к числу степеней свободы остаточной дисперсии
:

9. Определяется расчетное значение F-критерия F -расч как отношение факторной дисперсии на одну степень свободыd факт к остаточной дисперсии на одну степень свободы d ост :

10. По таблице F-критерия Фишера с учетом принятого в исследовании уровня значимости, а также с учетом степеней свободы для факторной и остаточной дисперсий находят теоретическое значение F табл .

5%-ному уровню значимости соответствует 95%-ный уровень вероятности, 1%-ному – 99%-ный уровень вероятности. В большинстве случаев используют 5%-ный уровень значимости.

Теоретическое значение F табл при заданном уровне значимости определяют по таблицам на пересечении строки и столбца, соответствующим двум степеням свободы дисперсий:

по строке – остаточной;

по столбцу – факторной.

11. Результаты расчетов оформляются в таблицу (табл.2).

5.1. Что такое дисперсионный анализ?

Дисперсионный анализ разработан в 20-х годах XX века английским математиком и генетиком Рональдом Фишером. По данным опроса среди ученых, где выяснялось, кто сильнее всего повлиял на биологию XX века, первенство получил именно сэр Фишер (за свои заслуги он был награжден рыцарским званием - одним из высших отличий в Великобритании); в этом отношении Фишер сравним с Чарльзом Дарвином, оказавшим наибольшее влияние на биологию XIX века.

Дисперсионный анализ (Analis of variance) является сейчас отдельной отраслью статистики. Он основан на открытом Фишером факте, что меру изменчивости изучаемой величины можно разложить на части, соответствующие влияющим на эту величину факторам и случайным отклонениям.

Чтобы понять суть дисперсионного анализа, мы выполним однотипные расчеты дважды: «вручную» (с калькулятором) и с помощью программы Statistica. Для упрощения нашей задачи мы будем работать не с результатами действительного описания разнообразия зеленых лягушек, а с вымышленным примером, который касается сравнения женщин и мужчин у людей. Рассмотрим разнообразие роста 12 взрослых человек: 7 женщин и 5 мужчин.

Таблица 5.1.1. Пример для однофакторного дисперсионного анализа: данные о поле и росте 12 людей

Проведем однофакторный дисперсионный анализ: сравним, статистически значимо или нет отличаются ли мужчины и женщины в охарактеризованной группе по росту.

5.2. Тест на нормальность распределения

Дальнейшие рассуждения основываются на том, что распределение в рассматриваемой выборке нормальное или близкое к нормальному. Если распределение далеко от нормального, дисперсия (варианса) не является адекватной мерой его его изменчивости. Впрочем, дисперсионный анализ относительно устойчив к отклонениям распределения от нормальности.

Тест этих данных на нормальность можно провести двумя разными способами. Первый: Statistics / Basic Statistics/Tables / Descriptive statistics / Вкладка Normality. Во вкладке Normality можно выбрать используемые тесты нормальности распределения. При нажатии на кнопку Frequency tables появится частотная таблица, а кнопки Histograms - гистограмма. На таблице и гистограмме будут приведены результаты различных тестов.

Второй способ связан с использованием соответствующих возможнойтсей при построении гистограмм. В диалоге построения гистограмм (Grafs / Histograms...) следует выбрать вкладку Advanced. В ее нижней части есть блок Statistics. Отметим на ней Shapiro-Wilk test и Kolmogorov-Smirnov test, как это показано на рисунке.

Рис. 5.2.1. Статистические тесты на нормальность распределения в диалоге построения гистограмм

Как видно по гистограмме, распределение роста в нашей выборке отличается от нормального (в середине - «провал»).


Рис. 5.2.2. Гистограмма, построенная с параметрами, указанными на предыдущем рисунке

Третья строка в заголовке графика указывает параметры нормального распределения, к которому оказалось ближе всего наблюдаемое распределение. Генеральное среднее составляет 173, генеральное стандартное отклонение - 10,4. Внизу во врезке на графике указаны результаты тестов на нормальность. D - это критерий Колмогорова-Смирнова, а SW-W - Шапиро-Вилка. Как видно, для всех использованных тестов отличия распределения по росту от нормального распределения оказались статистически незначимыми (p во всех случаях больше, чем 0,05).

Итак, формально говоря, тесты на соответствие распределения нормальному не «запретили» нам использовать параметрический метод, основанный на предположении о нормальном распределении. Как уже сказано, дисперсионный анализ относительно устойчив к отклонениям от нормальности, поэтому мы им все-таки воспользуемся.

5.3. Однофакторный дисперсионный анализ: вычисления «вручную»

Для характеристики изменчивости роста людей в приведенном примере вычислим сумму квадратов отклонений (в английском обозначается как SS , Sum of Squares или ) отдельных значений от среднего: . Среднее значение для роста в приведенном примере составляет 173 сантиметра. Исходя из этого,

SS = (186–173) 2 + (169–173) 2 + (166–173) 2 + (188–173) 2 + (172–173) 2 + (179–173) 2 + (165–173) 2 + (174–173) 2 + (163–173) 2 + (162–173) 2 + (162–173) 2 + (190–173) 2 ;

SS = 132 + 42 + 72 + 152 + 12 + 62 + 82 + 12 + 102 + 112 + 112 + 172;

SS = 169 + 16 + 49 + 225 + 1 + 36 + 64 + 1 + 100 + 121 + 121 + 289 = 1192.

Полученная величина (1192) - мера изменчивости всей совокупности данных. Однако они состоят из двух групп, для каждой из которых можно выделить свою среднюю. В приведенных данных средний рост женщин - 168 см, а мужчин - 180 см.

Вычислим сумму квадратов отклонений для женщин:

SS f = (169–168) 2 + (166–168) 2 + (172–168) 2 + (179–168) 2 + (163–168) 2 + (162–168) 2 ;

SS f = 12 + 22 + 42 + 112 + 32 + 52 + 62 = 1 + 4 + 16 + 121 + 9 + 25 + 36 = 212.

Также вычислим сумму квадратов отклонений для мужчин:

SS m = (186–180) 2 + (188–180) 2 + (174–180) 2 + (162–180) 2 + (190–180) 2 ;

SS m = 62 + 82 + 62 + 182 + 102 = 36 + 64 + 36 + 324 + 100 = 560.

От чего зависит исследуемая величина в соответствии с логикой дисперсионного анализа?

Две вычисленные величины, SS f и SS m , характеризуют внутригрупповую вариансу, которую в дисперсионном анализе принято называть «ошибкой». Происхождение этого названия связано со следующей логикой.

От чего зависит рост человека в рассматриваемом примере? Прежде всего, от среднего роста людей вообще, вне зависимости от их пола. Во вторую очередь - от пола. Если люди одного пола (мужского) выше, чем другого (женского), это можно представить в виде сложения с «общечеловеческой» средней какой-то величины, эффекта пола. Наконец, люди одного пола отличаются по росту в силу индивидуальных отличий. В рамках модели, описывающей рост как сумму общечеловеческой средней и поправки на пол, индивидуальные отличия необъяснимы, и их можно рассматривать как «ошибку».

Итак, в соответствии с логикой дисперсионного анализа, исследуемая величина определяется следующим образом: , где x ij - i-тое значение изучаемой величины при j-том значении изучаемого фактора; - генеральное среднее; F j - влияние j-того значения изучаемого фактора; - «ошибка», вклад индивидуальности объекта, к которому относится величина x ij .

Межгрупповая сумма квадратов

Итак, SS ошибки = SS f + SS m = 212 + 560 = 772. Этой величиной мы описали внутригрупповую изменчивость (при выделении групп по полу). Но есть и вторая часть изменчивости - межгрупповая, которую мы назовем SS эффекта (поскольку речь идет об эффекте разделения совокупности рассматриваемых объектов на женщин и мужчин).

Среднее каждой группы отличается от общей средней. Вычисляя вклад этого отличия в общую меру изменчивости, мы должны умножить отличие групповой и общей средней на число объектов в каждой группе.

SS эффекта = = 7×(168–173) 2 + 5×(180–173) 2 = 7×52 + 5×72 = 7×25 + 5×49 = 175 + 245 = 420.

Здесь проявился открытый Фишером принцип постоянства суммы квадратов: SS = SS эффекта + SS ошибки , т.е. для данного примера, 1192 = 440 + 722.

Средние квадраты

Сравнивая в нашем примере межгрупповую и внутригрупповую суммы квадратов, мы можем увидеть, что первая связана с варьированием двух групп, а вторая - 12 величин в 2 группах. Количество степеней свободы (df ) для какого-то параметра может быть определено как разность количества объектов в группе и количества зависимостей (уравнений), которое связывает эти величины.

В нашем примере df эффекта = 2–1 = 1, а df ошибки = 12–2 = 10.

Мы можем разделить суммы квадратов на число их степеней свободы, получив средние квадраты (MS , Means of Squares). Сделав это, мы можем установить, что MS - ни что иное, как вариансы («дисперсии», результат деления суммы квадратов на число степеней свободы). После этого открытия мы можем понять структуру таблицы дисперсионного анализа. Для нашего примера она будет иметь следующий вид.

Эффект

Ошибка

МS эффекта и МS ошибки являются оценками межгрупповой и внутригрупповой вариансы, и, значит, их можно сравнить по критерию F (критерию Снедекора, названному в честь Фишера), предназначенному для сравнения варианс. Этот критерий представляет собой просто частное от деления большей вариансы на меньшую. В нашем случае это 420 / 77,2 = 5,440.

Определение статистической значимости критерия Фишера по таблицам

Если бы мы определяли статистическую значимость эффекта вручную, по таблицам, нам было бы необходимо сравнить полученное значение критерия F с критическим, соответствующим определенному уровню статистической значимости при заданных степенях свободы.


Рис. 5.3.1. Фрагмент таблицы с критическими значениями критерия F

Как можно убедиться, для уровня статистической значимости p=0,05 критическое значение критерия F составляет 4,96. Это означает, что в нашем примере действие изучавшегося пола зарегистрировано с уровнем статистической значимости 0,05.

Полученный результат можно интерпретировать так. Вероятность нулевой гипотезы, согласно которой средний рост женщин и мужчин одинаков, а зарегистрированная разница в их росте связана со случайностью при формировании выборок, составляет менее 5%. Это означает, что мы должны выбрать альтернативную гипотезу, заключающуюся в том, что средний рост женщин и мужчин отличается.

5.4. Однофакторный дисперсионный анализ (ANOVA) в пакете Statistica

В тех случаях, когда расчеты производятся не вручную, а с помощью соответствующих программ (например, пакета Statistica) величина p определяется автоматически. Можно убедиться, что она несколько выше критического значения.

Чтобы проанализировать обсуждаемый пример с помощью простейшего варианта дисперсионного анализа, нужно запустить для файла с соответствующими данными процедуру Statistics / ANOVA и выбрать в окне Type of analysis вариант One-way ANOVA (однофакторный дисперсионный анализ), а в окне Specification method - вариант Quick specs dialog.


Рис. 5.4.1. Диалог General ANOVA/MANOVA (Дисперсионный анализ)

В открывшемся окне быстрого диалога в поле Variables нужно указать те столбцы, которые содержат данные, изменчивость которых мы изучаем (Dependent variable list; в нашем случае - столбец Growth), а также столбец, содержащие значения, разбивающие изучаемую величину на группы (Catigorical predictor (factor); в нашем случае - столбец Sex). В данном варианте анализа, в отличие от многофакторного анализа, может рассматриваться только один фактор.


Рис. 5.4.2. Диалог One-Way ANOVA (Однофакторный дисперсионный анализ)

В окне Factor codes следует указать те значения рассматриваемого фактора, которые нужно обрабатывать в ходе данного анализа. Все имеющиеся значения можно посмотреть с помощью кнопки Zoom; если, как в нашем примере, нужно рассматривать все значения фактора (а для пола в нашем примере их всего два), можно нажать кнопку All. Когда заданы обрабатываемые столбцы и коды фактора, можно нажать кнопку OK и перейти в окно быстрого анализа результатов: ANOVA Results 1, во вкладку Quick.

Рис. 5.4.3. Вкладка Quick окна результатов дисперсионного анализа

Кнопка All effects/Graphs позволяет увидеть, как соотносятся средние двух групп. Над графиком указывается число степеней свободы, а также значения F и p для рассматриваемого фактора.


Рис. 5.4.4. Графическое отображение результатов дисперсионного анализа

Кнопка All effects позволяет получить таблицу дисперсионного анализа, аналогичную описанной выше (с некоторыми существенными отличиями).


Рис. 5.4.5. Таблица с результатами дисперсионного анализа (сравните с аналогичной табличей, полученной "вручную")

В нижней строке таблицы указана сумма квадратов, количество степеней свободы и средние квадраты для ошибки (внутригрупповой изменчивости). На строку выше - аналогичные показатели для исследуемого фактора (в данном случае - признака Sex), a также критерий F (отношение средних квадратов эффекта к средним квадратам ошибки), и уровень его статистической значимости. То, что действие рассматриваемого фактора оказалось статистически значимым, показывает выделение красным цветом.

А в первой строке приведены данные по показателю «Intercept». Эта строка таблицы представляет загадку для пользователей, приобщающихся к пакету Statistica в его 6-й или более поздней версии. Величина Intercept (пересечение, перехват), вероятно, связана с разложением суммы квадратов всех значений данных (т.е. 1862 + 1692 … = 360340). Указанное для нее значение критерия F получено путем деления MS Intercept /MS Error = 353220 / 77,2 = 4575,389 и, естественно, дает очень низкое значение p . Интересно, что в Statistica-5 эта величина вообще не вычислялась, а руководства по использованию более поздних версий пакета никак не комментируют ее введение. Вероятно, лучшее, что может сделать биолог, работающий с пакетом Statistica-6 и последующих версий, это попросту игнорировать строку Intercept в таблице дисперсионного анализа.

5.5. ANOVA и критерии Стьюдента и Фишера: что лучше?

Как вы могли заметить, те данные, которые мы сравнивали с помощью однофакторного дисперсионного анализа, мы могли исследовать и с помощью критериев Стьюдента и Фишера. Сравним эти два метода. Для этого вычислим разницу в росте мужчин и женщин с использованием этих критериев. Для этого нам придется пройти по пути Statistics / Basic Statistics / t-test, independent, by groups. Естественно, Dependent variables - это переменная Growth, а Grouping variable - переменная Sex.


Рис. 5.5.1. Сравнение данных, обработанных с помощью ANOVA, по критериям Стьюдента и Фишера

Как можно убедиться, результат тот же самый, что и при использовании ANOVA. p = 0,041874 в обоих случаях, как показанном на рис. 5.4.5, так и показанном на рис. 5.5.2 (убедитесь в этом сами!).


Рис. 5.5.2. Результаты анализа (подробная расшифровка таблицы результатов - в пункте, посвященном критерию Стьюдента)

Важно подчеркнуть, что хотя критерий F с математической точки зрения в рассматриваемом анализе по критериям Стьюдента и Фишера тот же самый, что в ANOVA (и выражает отношение варианс), смысл его в результатах анализа, представляемых итоговой таблицей, совсем иной. При сравнении по критериям Стьюдента и Фишера сравнение средних значений выборок проводится по критерию Стьюдента, и сравнение их изменчивости проводится по критерию Фишера. В результатах анализа выводится не сама варианса, а ее квадратный корень - стандартное отклонение.

В дисперсионном анализе, напротив, критерий Фишера используется для сравнения средних разных выборок (как мы обсудили, это осуществляется с помощью разделения суммы квадратов на части и сравнения средней суммы квадратов, соответствующей меж- и внутригрупповой изменчивости).

Впрочем, приведенное отличие касается скорее представления результатов статистического исследования, чем его сути. Как указывает, например, Гланц (1999, с. 99), сравнение групп по критерию Стьюдента можно рассматривать как частный случай дисперсионного анализа для двух выборок.

Итак, сравнение выборок по критериям Стьюдента и Фишера имеет одно важное преимущество перед дисперсионным анализом: в нем можно сравнить выборки с точки зрения их изменчивости. Но преимущества дисперсионного анализа все равно весомее. К их числу, например, относится возможность одновременного сравнения нескольких выборок.