Коэффициент парной линейной регрессии. Уравнение регрессии

Уравнение парной регрессии .

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Система нормальных уравнений.

a n + b∑x = ∑y

a∑x + b∑x 2 = ∑y x

Для наших данных система уравнений имеет вид

12a + 1042 b = 1709

1042 a + 91556 b = 149367

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 0.9, a = 64.21

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 0.9 x + 64.21

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов β i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров линейной регрессии построим расчетную таблицу (табл. 1)

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация .

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.9 x + 64.21

1.3. Коэффициент эластичности .

Коэффициент эластичности находится по формуле:

1.4. Ошибка аппроксимации .

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

1.5. Эмпирическое корреляционное отношение.

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах .

Индекс корреляции .

Для линейной регрессии индекс корреляции равен коэфииценту корреляции r xy = 0.79.

Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции :

1.6. Коэффициент детерминации.

Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R 2 = 0.79 2 = 0.62

Для оценки качества параметров линейной регрессии построим расчетную таблицу (табл. 2)

2. Оценка параметров уравнения регрессии.

2.1. Значимость коэффициента корреляции .

Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H 1 ≠ 0, надо вычислить наблюдаемое значение критерия

и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку t крит двусторонней критической области. Если t набл < t крит оснований отвергнуть нулевую гипотезу. Если |t набл | > t крит - нулевую гипотезу отвергают.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим t крит:

где m = 1 - количество объясняющих переменных.

2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал).

2.3. Анализ точности определения оценок коэффициентов регрессии.

Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 53.63 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

S y = 7.32 - стандартная ошибка оценки (стандартная ошибка регрессии).

S a - стандартное отклонение случайной величины a.

S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.

(a + bx p ± ε)

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 107

Индивидуальные доверительные интервалы для Y при данном значении X.

(a + bx i ± ε)

t крит (n-m-1;α/2) = (10;0.025) = 2.228

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.

1) t-статистика. Критерий Стьюдента.

t крит (n-m-1;α/2) = (10;0.025) = 2.228

Доверительный интервал для коэффициентов уравнения регрессии .

(b - t крит S b ; b + t крит S b)

(a - t крит S a ; a + t крит S a)

2) F-статистика. Критерий Фишера.

Табличное значение критерия со степенями свободы k 1 =1 и k 2 =10, F табл = 4.96

Наиболее простой с точки зрения понимания, интерпретации и техники расчетов является линейная форма регрессии .

Уравнение линейной парной регрессии , где

a 0 , a 1 - параметры модели, ε i - случайная величина (величина остатка).

Параметры модели и их содержание:


Уравнение регрессии дополняется показателем тесноты связи. В качестве такого показателя выступает линейный коэффициент корреляции , который рассчитывают по формуле:

или .

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

,

где

.

Соответственно величина характеризует долю дисперсии , вызванную влиянием остальных, неучтенных в модели, факторов.

После того как уравнение регрессии построено, выполняется проверка его адекватности и точности.Эти свойства модели исследуются на основе анализа ряда остатков ε i (отклонений расчетных значений от фактических).

Уровень ряда остатков

Корреляционный и регрессионный анализ проводится для ограниченной по объему совокупности. В связи с этим показатели регрессии, корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенной модели.

Проверка адекватности модели заключается в определении значимости модели и установление наличия или отсутствия систематической ошибки.

Значения у 1 соответствующие данным х i при теоретических значениях а 0 и а 1 , случайные. Случайными будут и рассчитанные по ним значения коэффициентов а 0 и а 1 .

Проверка значимостиотдельных коэффициентов регрессии проводится по t-критерию Стьюдента путем проверки гипотезы равенстве нулю каждого коэффициента регрессии. При этом выясняют, насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатом действия случайных величин. Для соответствующих коэффициентов регрессии применяют соответствующие формулы.

Формулы для определения t- критерия Стьюдента

где

S a 0 ,S a 1 - стандартные отклонения свободного члена и коэффициента регрессии. Определяются по формулам

где

S ε - стандартное отклонение остатков модели (стандартная ошибка оценки), которая определяется по формуле

Расчетные значения t-критерия сравнивают с табличным значением критерия t αγ , .которое определяется при (n — k — 1) степенях свободы и соответствующем уровне значимости α. Если расчетное значение t -критерия превосходит его табличное значение t αγ ,то параметр признается значимым. В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Оценка значимости уравнения регрессии в целом производится на основе - критерия Фишера , которому предшествует дисперсионный анализ.

Общая сумма квадратов отклонений переменной от среднего значения раскладывается на две части - «объясненную» и «необъясненную»:

Общая сумма квадратов отклонений;

Сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений);


- остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов.

Схема дисперсионного анализа имеет вид, представленный в таблице 35 ( - число наблюдений, - число параметров при переменной ).

Таблица 35 - Схема дисперсионного анализа

Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы
Общая
Факторная
Остаточная

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину -критерия Фишера:

Для проверки значимости уравнения регрессии в целом используют F-критерий Фишера . В случае парной линейной регрессии значимость модели регрессии определяется по следующей формуле: .

Если при заданном уровне значимости расчетное значение F -критерия с γ 1 =k, γ 2 =(п - k - 1) степенями свободы больше табличного, то модель считается значимой, гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Проверка наличия или отсутствия систематической ошибки (выполнения предпосылок метода наименьших квадратов — МНК) осуществляется на основе анализа ряда остатков. Расчет случайных ошибок параметров линейной регрессии и коэффициента корреляции производят по формулам

,

Для проверки свойства случайности ряда остатков можно использовать критерий поворотных точек (пиков). Точка считается поворотной, если выполняются следующие условия: ε i -1 < ε i > ε i +1 или ε i -1 > ε i < ε i +1

Далее подсчитывается число поворотных точек р. Критерием случайности с 5 % уровнем значимости, т.е. с доверительной вероятностью 95%, является выполнение неравенства:

Квадратные скобки означают, что берется целая часть числа, заключенного в скобки. Если неравенство выполняется, то модель считается адекватной.

Для проверки равенства математического ожидания остаточной последовательности нулю вычисляется среднее значение ряда остатков:

Если = 0, то считается, что модель не содержит постоянной систематической ошибки и адекватна по критерию нулевого среднего.

Если ≠ 0, то проверяется нулевая гипотеза о равенстве нулю математического ожидания. Для этого вычисляют t -критерий Стьюдента по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка).

Значение t -критерий сравнивают с табличным t αγ . Если выполняется неравенство t > t αγ , то модель неадекватна по данному критерию

Дисперсия уровней ряда остатков должна быть одинаковой для всех значений х (свойство гомоскедастичности ).Если это условие не соблюдается, то имеет место гетероскедастичность .

Для оценки гетероскедастичности при малом объеме выборки можно использовать метод Гольдфельда—Квандта , суть которого заключается в том, что необходимо:

Расположить значения переменной х в порядке возрастания;

Разделить совокупность упорядоченных наблюдений на две группы;

По каждой группе наблюдений построить уравнения регрессии;

Определить остаточные суммы квадратов для первой и второй групп по формулам: ; , где

n 1 - число наблюдений в первой группе;

n 2 - число наблюдений во второй группе.

Рассчитать критерий или (в числителе должна быть большая сумма квадратов). При выполнении нулевой гипотезы о гомоскедастичности критерий F расч будет удовлетворять F-критерию со степенями свободы γ 1 =n 1 -m, γ 2 =n - n 1 - m) для каждой остаточной суммы квадратов (где mчисло оцениваемых параметров в уравнении регрессии). Чем больше величина F расч превышает табличное значение F- критерия, тем больше нарушена предпосылка о равенстве дисперсий остаточных величин.

Проверку независимости последовательности остатков (отсутствие автокорреляции) осуществляют с помощью d-критерия Дарбина—Уотсона . Он определяется по формуле:

Расчетное значение критерия сравнивается с нижним d 1 и верхним d 2 критическими значениями статистики Дарбина—Уотсона. Возможны следующие случаи:

1) если d < d 1 , то гипотеза о независимости остатков отвергается и модель признается неадекватной по критерию независимости остатков;

2) если d 1 < d < d 2 (включая сами эти значения), то считается, что нет достаточных оснований сделать тот или иной вывод. Необходимо использовать дополнительный критерий, например первый коэффициент автокорреляции:

Если расчетное значение коэффициента по модулю меньше табличного значения г 1кр, то гипотеза об отсутствии автокорреляции принимается; в противном случае эта гипотеза отвергается;

3) если d 2 < d < 2, то гипотеза о независимости остатков принимается и модель признается адекватной по данному критерию;

4) если d> 2, то это свидетельствует об отрицательной автокорреляции остатков. В этом случае расчетное значение критерия необходимо преобразовать по формуле d′= 4 - dи сравнивать с критическим значением d′, а не d.

Проверку соответствия распределения остаточной последовательности нормальному закону распределенияможно осуществить с помощью R/S - критерия, который определяется по формуле:

где S ε — стандартное отклонение остатков модели (стандартная ошибка). Расчетное значение R/S - критерия сравнивают с табличными значениями (нижней и верхней границами данного отношения), и если значение не попадает в интервал между критическими границами, то с заданным уровнем значимости гипотеза о нормальности распределения отвергается; в противном случае гипотеза принимается

Для оценки качества регрессионных моделей целесообразно также использовать индекс корреляции (коэффициент множественной корреляции).

Формула определения индекса корреляции

где

Общая сумма квадратов отклонений зависимой переменной от ее среднего значения. Определяется по формуле:

Сумма квадратов отклонений, объясненная регрессией. Определяется по формуле:

Остаточная сумма квадратов отклонений. Вычисляется по формуле:

Уравнение можно представить следующим образом:

Индекс корреляции принимает значение от 0 до 1. Чем выше значение индекса, тем ближе расчетные значения результативного признака к фактическим. Индекс корреляции используется при любой форме связи переменных; при парной линейной регрессии он равен парному коэффициенту корреляции.

В качестве меры точности модели применяют точностные характеристики: Для определения меры точности модели рассчитывают:

- максимальная ошибка - соответствует отклонению расчетному отклонению расчетных значений от фактических

- средняя абсолютная ошибка - ошибка показывает, насколько в среднем отклоняются фактические значения от модели

- дисперсия ряда остатков (остаточная дисперсия)

где - среднее значение ряда остатков. Определяется по формуле

- средняя квадратическая ошибка . Представляет собой корень квадратный из дисперсии: , чем меньше значение ошибки, тем точнее модель

- средняя относительная ошибка аппроксимации .

Средняя ошибка аппроксимации не должна превышать 8-10%.

Если модель регрессии признана адекватной, а параметры модели значимы, то переходят к построению прогноза.

Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной х прогн.

Данный прогноз называется точечным. Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большой надежностью.

Доверительные интервалы прогноза зависят от стандартной ошибки, удаления х прогн от своего среднего значения , количества наблюдений n и уровня значимости прогноза α. Доверительные интервалы прогноза рассчитывают по формуле: или

где

t табл - определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы γ=n-k-1.

Пример13 .

По данным проведенного опроса восьми групп семей известны данные связи расходов населения на продукты питания с уровнем доходов семьи (таблица 36).

Таблица 36 - Связи расходов населения на продукты питания с уровнем доходов семьи

Расходы на продукты питания, , тыс. руб. 0,9 1,2 1,8 2,2 2,6 2,9 3,3 3,8
Доходы семьи, , тыс. руб. 1,2 3,1 5,3 7,4 9,6 11,8 14,5 18,7

Предположим, что связь между доходами семьи и расходами на продукты питания линейная. Для подтверждения нашего предположения построим поле корреляции (рисунок 8).

По графику видно, что точки выстраиваются в некоторую прямую линию.

Для удобства дальнейших вычислений составим таблицу 37.

Рассчитаем параметры линейного уравнения парной регрессии . Для этого воспользуемся формулами:

Рисунок 8 - Поле корреляции.

Получили уравнение:

Т.е. с увеличением дохода семьи на 1000 руб. расходы на питание увеличиваются на 168 руб.

Расчет линейного коэффициента корреляции .

Парная линейная регрессия

ПРАКТИКУМ

Парная линейная регрессия: Практикум. –

Изучение эконометрики предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, оценки ее качества, интерпретации результатов, получения прогнозных оценок и пр. Практикум поможет студентам приобрести практические навыки в этих вопросах.

Утверждено редакционно-издательским советом

Составитель: М.Б. Перова, д.э.н., профессор

Общие положения

Эконометрическое исследование начинается с теории, устанавливающей связь между явлениями. Из всего круга факторов, влияющих на результативный признак, выделяются наиболее существенные факторы. После того, как было выявлено наличие взаимосвязи между изучаемыми признаками, определяется точный вид этой зависимости с помощью регрессионного анализа.

Регрессионный анализ заключается в определении аналитического выражения (в определении функции), в котором изменение одной величины (результативного признака) обусловлено влиянием независимой величины (факторного признака). Количественно оценить данную взаимосвязь можно с помощью построения уравнения регрессии или регрессионной функции.

Базисной регрессионной моделью является модель парной (однофакторной) регрессии. Парная регрессия – уравнение связи двух переменных у и х :

где – зависимая переменная (результативный признак);

–независимая, объясняющая переменная (факторный признак).

В зависимости от характера изменения у с изменением х различают линейные и нелинейные регрессии.

Линейная регрессия

Данная регрессионная функция называется полиномом первой степени и используется для описания равномерно развивающихся во времени процессов.

Наличие случайного члена (ошибки регрессии) связано с воздействием на зависимую переменную других неучтенных в уравнении факторов, с возможной нелинейностью модели, ошибками измерения, следовательно, появлениеслучайной ошибки уравнения регрессии может быть обусловлено следующими объективными причинами :

1) нерепрезентативность выборки. В модель парной регрессии включается фактор, не способный полностью объяснить вариацию результативного признака, который может быть подвержен влиянию многих других факторов (пропущенных переменных) в гораздо большей степени. Наприем, заработная плата может зависеть, кроме квалификации, от уровня образования, стажа работы, пола и пр.;

2) существует вероятность того, что переменные, участвующие в модели, могут быть измерены с ошибкой. Например, данные по расходам семьи на питание составляются на основании записей участников опросов, которые, как предполагается, тщательно фиксируют свои ежедневные расходы. Разумеется, при этом возможны ошибки.

На основе выборочного наблюдения оценивается выборочное уравнение регрессии (линия регрессии ):

,

где
– оценки параметров уравнения регрессии (
).

Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов :

    На основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности. Например, если изучается зависимость между доходами населения и размером вкладов населения в банки, то очевидно, что связь прямая.

    Графический метод , когда характер связи оценивается визуально.

Эту зависимость можно наглядно увидеть, если построить график, отложив на оси абсцисс значения признака х , а на оси ординат – значения признака у . Нанеся на график точки, соответствующие значениям х и у , получим корреляционное поле :

а) если точки беспорядочно разбросаны по всему полю – это говорит об отсутствии зависимости между этими признаками;

б) если точки концентрируются вокруг оси, идущей от нижнего левого угла в верхний правый – то имеется прямая зависимость между признаками;

в) если точки концентрируются вокруг оси, идущей от верхнего левого угла в нижний правый – то обратная зависимость между признаками.

Если на корреляционном поле соединим точки отрезками прямой, то получим ломаную линию с некоторой тенденцией к росту. Это будет эмпирическая линия связи или эмпирическая линия регрессии . По ее виду можно судить не только о наличии, но и о форме зависимости между изучаемыми признаками.

Построение уравнения парной регрессии

Построение уравнения регрессии сводится к оценке ее параметров. Эти оценки параметров могут быть найдены различными способами. Одним их них является метод наименьших квадратов (МНК). Суть метода состоит в следующем. Каждому значению соответствует эмпирическое (наблюдаемое) значение. Построив уравнение регрессии, например уравнение прямой линии, каждому значениюбудет соответствовать теоретическое (расчетное) значение. Наблюдаемые значенияне лежат в точности на линии регрессии, т.е. не совпадают с. Разность между фактическим и расчетным значениями зависимой переменной называетсяостатком :

МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических , т.е. сумма квадратов остатков, минимальна:

Для линейных уравнений и нелинейных, приводимых к линейным, решается следующая система относительно а и b :

где n – численность выборки.

Решив систему уравнений, получим значения а и b , что позволяет записать уравнение регрессии (регрессионное уравнение):

где – объясняющая (независимая) переменная;

–объясняемая (зависимая) переменная;

Линия регрессии проходит через точку (,) и выполняются равенства:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы уравнений:

где – среднее значение зависимого признака;

–среднее значение независимого признака;

–среднее арифметическое значение произведения зависимого и независимого признаков;

–дисперсия независимого признака;

–ковариация между зависимым и независимым признаками.

Выборочной ковариацией двух переменных х , у называется средняя величина произведения отклонений этих переменных от своих средних

Параметр b при х имеет большое практическое значение и носит название коэффициента регрессии. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется величина у х на 1 единицу своего измерения.

Знак параметра b в уравнении парной регрессии указывает на направление связи:

если
, то связь между изучаемыми показателями прямая, т.е. с увеличением факторного признаках увеличивается и результативный признак у , и наоборот;

если
, то связь между изучаемыми показателями обратная, т.е. с увеличением факторного признаках результативный признак у уменьшается, и наоборот.

Значение параметра а в уравнении парной регрессии в ряде случаев можно трактовать как начальное значение результативного признака у . Такая трактовка параметра а возможна только в том случае, если значение
имеет смысл.

После построения уравнения регрессии, наблюдаемые значения y можно представить как:

Остатки , как и ошибки, являются случайными величинами, однако они, в отличие от ошибок, наблюдаемы. Остаток есть та часть зависимой переменнойy , которую невозможно объяснить с помощью уравнения регрессии.

На основании уравнения регрессии могут быть вычислены теоретические значения у х для любых значений х .

В экономическом анализе часто используется понятие эластичности функции. Эластичность функции
рассчитывается как относительное изменениеy к относительному изменению x . Эластичность показывает, на сколько процентов изменяется функция
при изменении независимой переменной на 1%.

Поскольку эластичность линейной функции
не является постоянной величиной, а зависит отх , то обычно рассчитывается коэффициент эластичности как средний показатель эластичности.

Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится величина результативного признака у при изменении факторного признака х на 1% от своего среднего значения:

где
– средние значения переменныхх и у в выборке.

Оценка качества построенной модели регрессии

Качество модели регрессии – адекватность построенной модели исходным (наблюдаемым) данным.

Чтобы измерить тесноту связи, т.е. измерить, насколько она близка к функциональной, нужно определить дисперсию, измеряющую отклонения у от у х и характеризующую остаточную вариацию, обусловленную прочими факторами. Они лежат в основе показателей, характеризующих качество модели регрессии.

Качество парной регрессии определяется с помощью коэффициентов, характеризующих

1) тесноту связи – индекса корреляции, парного линейного коэффициента корреляции;

2) ошибку аппроксимации;

3) качество уравнения регрессии и отдельных его параметров – средние квадратические ошибки уравнения регрессии в целом и отдельных его параметров.

Для уравнений регрессии любого вида определяется индекс корреляции , который характеризует только тесноту корреляционной зависимости, т.е. степень ее приближения к функциональной связи:

,

где – факторная (теоретическая) дисперсия;

–общая дисперсия.

Индекс корреляции принимает значения
, при этом,

если

если
– то связь между признакамих и у является функциональной, Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками. Если
, то связь можно считать тесной

Дисперсии, необходимые для вычисления показателей тесноты связи вычисляются:

Общая дисперсия , измеряющая общую вариацию за счет действия всех факторов:

Факторная (теоретическая) дисперсия, измеряющая вариацию результативного признака у за счет действия факторного признака х :

Остаточная дисперсия , характеризующая вариацию признака у за счет всех факторов, кроме х (т.е. при исключенном х ):

Тогда по правилу сложения дисперсий:

Качество парной линейной регрессии может быть определено также с помощью парного линейного коэффициента корреляции :

,

где
– ковариация переменныхх и у ;

–среднеквадратическое отклонение независимого признака;

–среднеквадратическое отклонение зависимого признака.

Линейный коэффициент корреляции характеризует тесноту и направление связи между изучаемыми признаками. Он измеряется в пределах [-1; +1]:

если
– то связь между признаками прямая;

если
– то связь между признаками обратная;

если
– то связь между признаками отсутствует;

если
или
– то связь между признаками является функциональной, т.е. характеризуется полным соответствием междух и у . Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками.

Если индекс корреляции (парный линейный коэффициент корреляции) возвести в квадрат, то получим коэффициент детерминации.

Коэффициент детерминации – представляет собой долю факторной дисперсии в общей и показывает, на сколько процентов вариация результативного признака у объясняется вариацией факторного признака х :

Он характеризует не всю вариацию у от факторного признака х , а лишь ту ее часть, которая соответствует линейному уравнению регрессии, т.е. показывает удельный вес вариации результативного признака, линейно связанной с вариацией факторного признака.

Величина
– доля вариации результативного признака, которую модель регрессии учесть не смогла.

Рассеяние точек корреляционного поля может быть очень велико, и вычисленное уравнение регрессии может давать большую погрешность в оценке анализируемого показателя.

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических:

Максимально допустимое значение 12–15%.

Мерой разброса зависимой переменной вокруг линии регрессии служит стандартная ошибка.Для всей совокупности наблюдаемых значений рассчитывается стандартная (среднеквадратическая) ошибка уравнения регрессии , которая представляет собой среднее квадратическое отклонение фактических значений у относительно теоретических значений, рассчитанных по уравнению регрессии у х .

,

где
– число степеней свободы;

m – число параметров уравнения регрессии (для уравнения прямой m =2).

Оценить величину средней квадратической ошибки можно сопоставив ее

а) со средним значение результативного признака у ;

б) со средним квадратическим отклонением признака у :

если
, то использование данного уравнения регрессии является целесообразным.

Отдельно оцениваются стандартные (среднеквадратические) ошибки параметров уравнения и индекса корреляции :

;
;
.

х – среднее квадратическое отклонение х .

Проверка значимости уравнения регрессии и показателей тесноты связи

Чтобы построенную модель можно было использовать для дальнейших экономических расчетов, проверки качества построенной модели недостаточно. Необходимо также проверить значимость (существенность) полученных с помощью метода наименьших квадратов оценок уравнения регрессии и показателя тесноты связи, т.е. необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Это связано с тем, что исчисленные по ограниченной совокупности показатели сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определенной статистической закономерности. Необходима оценка степени точности и значимости (надежности, существенности) параметров регрессии. Под значимостью понимают вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Проверка значимости – проверка предположения того, что параметры отличаются от нуля.

Оценка значимости парного уравнения регрессии сводится к проверке гипотез о значимости уравнения регрессии в целом и отдельных его параметров (a , b ), парного коэффициента детерминации или индекса корреляции.

В этом случае могут быть выдвинуты следующие основные гипотезы H 0 :

1)
– коэффициенты регрессии являются незначимыми и уравнение регрессии также является незначимым;

2)
– парный коэффициент детерминации незначим и уравнение регрессии также является незначимым.

Альтернативной (или обратной) выступают следующие гипотезы:

1)
– коэффициенты регрессии значимо отличаются от нуля, и построенное уравнение регрессии является значимым;

2)
– парный коэффициент детерминации значимо отличаются от нуля и построенное уравнение регрессии является значимым.

Проверка гипотезы о значимости уравнения парной регрессии

Для проверки гипотезы о статистической незначимости уравнения регрессии в целом и коэффициента детерминации используется F -критерий (критерий Фишера ):

или

где k 1 = m –1 ; k 2 = n m – число степеней свободы;

n – число единиц совокупности;

m – число параметров уравнения регрессии;

–факторная дисперсия;

–остаточная дисперсия.

Гипотеза проверяется следующим образом:

1) если фактическое (наблюдаемое) значение F -критерия больше критического (табличного) значения данного критерия
, то с вероятностью
основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации отвергается, и уравнение регрессии признается значимым;

2) если фактическое (наблюдаемое) значение F-критерия меньше критического значения данного критерия
, то с вероятностью (
) основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации принимается, и построенное уравнение регрессии признается незначимым.

Критическое значение F -критерия находится по соответствующим таблицам в зависимости от уровня значимости и числа степеней свободы
.

Число степеней свободы – показатель, который определяется как разность между объемом выборки (n ) и числом оцениваемых параметров по данной выборке (m ). Для модели парной регрессии число степеней свободы рассчитывается как
, так как по выборке оцениваются два параметра (
).

Уровень значимости – величина, определяемая
,

где – доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Обычно принимается 0,95. Таким образом– это вероятность того, что оцениваемый параметр не попадет в доверительный интервал, равная 0,05 (5%) .

Тогда в случае оценки значимости уравнения парной регрессии критическое значение F-критерия вычисляется как
:

.

Проверка гипотезы о значимости параметров уравнения парной регрессии и индекса корреляции

При проверке значимости параметров уравнения (предположения того, что параметры отличаются от нуля) выдвигается основная гипотеза о незначимости полученных оценок (
. В качестве альтернативной (обратной) выдвигается гипотеза о значимости параметров уравнения (
).

Для проверки выдвинутых гипотез используется t -критерий (t -статистика) Стьюдента . Наблюдаемое значение t -критерия сравнивается со значением t -критерия, определяемого по таблице распределения Стьюдента (критическим значением). Критическое значение t -критерия
зависит от двух параметров: уровня значимостии числа степеней свободы
.

Выдвинутые гипотезы проверяются следующим образом:

1) если модуль наблюдаемого значения t -критерия больше критического значения t -критерия, т.е.
, то с вероятностью
основную гипотезу о незначимости параметров регрессии отвергают, т.е. параметры регрессии не равны 0;

2) если модуль наблюдаемого значения t -критерия меньше или равен критическому значению t -критерия, т.е.
, то с вероятностью
основная гипотеза о незначимости параметров регрессии принимается, т.е. параметры регрессии почти не отличаются от 0 или равны 0.

Оценка значимости коэффициентов регрессии с помощью критерия Стьюдента проводится путем сопоставления их оценок с величиной стандартной ошибки:

;

Для оценки статистической значимости индекса (линейного коэффициента) корреляции применяется также t -критерий Стьюдента.

Назначение сервиса . С помощью сервиса в онлайн режиме можно найти:
  • параметры уравнения линейной регрессии y=a+bx , линейный коэффициент корреляции с проверкой его значимости;
  • тесноту связи с помощью показателей корреляции и детерминации, МНК-оценку, статическую надежность регрессионного моделирования с помощью F-критерия Фишера и с помощью t-критерия Стьюдента , доверительный интервал прогноза для уровня значимости α

Уравнение парной регрессии относится к уравнению регрессии первого порядка . Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии .

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте . Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования .
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели - определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

Где y – зависимая переменная (результативный признак); x – независимая, или объясняющая, переменная (признак-фактор). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина y складывается из двух слагаемых:

Где y – фактическое значение результативного признака; y x – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; ε – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.
Графически покажем регрессионную зависимость между выработкой продукции на одного работника и удельного веса рабочих высокой квалификации.


3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными. Выбор вида функциональной зависимости в уравнении регрессии называется параметризацией модели. Выбираем уравнение парной регрессии , т.е. на конечный результат y будет влиять только один фактор.
4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей. Выборка состоит из 10 предприятий отрасли.
5-й этап (идентификация модели) – оценивание неизвестных параметров модели по имеющимся статистическим данным.
Чтобы определить параметры модели, используем МНК - метод наименьших квадратов . Система нормальных уравнений будет выглядеть следующим образом:
a n + b∑x = ∑y
a∑x + b∑x 2 = ∑y x
Для расчета параметров регрессии построим расчетную таблицу (табл. 1).
x y x 2 y 2 x y
10 6 100 36 60
12 6 144 36 72
15 7 225 49 105
17 7 289 49 119
18 7 324 49 126
19 8 361 64 152
19 8 361 64 152
20 9 400 81 180
20 9 400 81 180
21 10 441 100 210
171 77 3045 609 1356

Данные берем из таблицы 1 (последняя строка), в итоге имеем:
10a + 171 b = 77
171 a + 3045 b = 1356
Эту СЛАУ решаем методом Крамера или методом обратной матрицы .
Получаем эмпирические коэффициенты регрессии: b = 0.3251, a = 2.1414
Эмпирическое уравнение регрессии имеет вид:
y = 0.3251 x + 2.1414
6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Анализ проводим с помощью

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Комсомольский-на-Амуре государственный технический университет»

Факультет экономики и менеджмента

Кафедра «Экономики, финансов и бухгалтерского учета»

РАСЧЁТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

по дисциплине «Эконометрика»

Студент группы

А.Ю. Зайченко

Преподаватель

И.И. Антонова

Таблица 1

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

Требуется:

1. Построить линейное уравнение парной регрессии от.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума, составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу 2. линейный корреляция аппроксимация регрессия

Таблица 2

Среднее значение

Получено уравнение регрессии:

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

Это означает, что 51% вариации заработной платы () объясняется вариацией фактора - среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет. Так как, то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит.

Определим случайные ошибки, :

Фактические значения -статистики превосходят табличное значение:

поэтому параметры, и не случайно отличаются от нуля, а статистически значимы. Рассчитаем доверительные интервалы для параметров регрессии и. Для этого определим предельную ошибку для каждого показателя:

Доверительные интервалы:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

тогда прогнозное значение заработной платы составит:

Ошибка прогноза составит:

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

Доверительный интервал прогноза:

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131,66 руб. до 190,62 руб. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рисунок1)

Рисунок 1

Размещено на Allbest.ru

Подобные документы

    Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа , добавлен 05.05.2010

    Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа , добавлен 14.05.2008

    Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа , добавлен 11.12.2010

    Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

    контрольная работа , добавлен 23.03.2010

    Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа , добавлен 11.04.2015

    Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 17.10.2009

    Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа , добавлен 02.06.2014

    Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.

    контрольная работа , добавлен 05.11.2014

    Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа , добавлен 28.03.2018

    Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.