Какой мозг наиболее развит у млекопитающих. Млекопитающие. Схема строения головного мозга

Эволюция головного мозга у млекопитающих

Со стороны эволюции головного мозга характерно прогрессивное увеличение его массы, объема и сложности организации неокортекса. В ходе эволюции архи- и палеокортекс оттесняются к мозговой перегородке.

У животных разных отрядов прослеживается постепенное формирование складчатости.

Для млекопитающих характерно несколько типов организации головного мозга.

Лиссэнцефалический тип организации головного мозга характерен для однопроходных животных (утконос). При этом типе организации постоянно выражена центральная борозда, которая разделяет корковые структуры на лобную и теменную часть. Количественно доминируют палеокортекс, а неокортекс занимает относительно меньшую площадь корковых структур. Отличительной чертой этого типа организации является отсутствие мозолистого тела. В лиссэнцефалическом мозге между корковыми полями существует перекрытия проекций разных видов чувств. Нейроны накладываются и получают информацию от разных каналов. В коре перекрываются двигательная и сенсорная области. В промежуточном мозге происходит углубление дифференцировки ядер таламуса: наблюдается группа, которая у насекомоядных сформировывает ассоциативную группу ядер. В коре выделяется область α-мотонейронов, которые регулируют α-мотонейроны спинного мозга, это приводит к формированию в мозжечке неоцеребелума, который включается в регуляцию двигательной активности.

У сумчатых сохраняется такая же организация головного мозга.

Гирэнцефалический тип организации головного мозга характерен для насекомоядных и грызунов. При данном типе организации появляется мозолистое тело, повышается площадь новой коры, проявляются борозды и извилины.

У насекомоядных образуются две полисенсорные зоны – аналоги ассоциативных областей.

У грызунов морфологически выделяются лобная и теменная области, но они еще не выполняют роль ассоциативных зон. Эту функцию выполняют несколько полей неокортекса разной локализации. Также у этой группы животных наблюдается четкая специализация сенсорных зон на определенные виды чувств, т.е. они больше между собой не перекрываются. У грызунов появляется другой вариант проекции зрительной информации (исходно основным было переключение было ретино-тектальное (однопроходные, сумчатые, насекомоядные)) – ретино-таламическая. Он отличается тем, что основной отбор и обработку информации осуществляется коленчатыми телами таламуса. У грызунов наблюдаются уже сформированные таламо-кортикальные связи, однако, их функциональная дифференцировка относительно слабая.

Дейтерогирэнцефалический тип организации головного мозга характерен для хищных млекопитающих. У хищников кроме постоянных борозд и извилин происходит значительное развитие складчатости неокортекса. Четко выделяются дифференцированные зоны: специальные проекционные зоны (обрабатывают информацию от сенсорной системы), моторные (двигательные) зоны, хорошо сформированные ассоциативные зоны, что представлены в теменной доле и лобной. Корковые ассоциативные зоны входят в состав двух таламо-кортикальных ассоциативных систем:

  1. Таламо-париетальная система отвечает за компоненты вышей нервной системы: участвует в формировании ориентационных рефлексов, формирует представление о пространственной схеме тела, участвует в механизмах кратковременной памяти.
  2. Таламо-фронтальная система связана со структурами лимбической системы. Формирует акцептор действия (сравнивает на уровне корковых форм на сколько соответствует приспособлению результат).

Гоминидный тип организации головного мозга характеризуется у высших приматов шестислойным неокортексом. Все функциональные зоны коры не перекрываются между собой, формируют три интегративные системы:

  1. Таламо-париетальная, в ее состав входят 5 и 7 поля ассоциативной коры и она выполняет следующие функции: запуск ориентировочной реакции, формирование кратковременной памяти, ощущение пространственной схемы тела.
  2. Таламо-фронтальная система обеспечивает оценку обстановки: акцептор результата действия, обеспечивает механизм долговременной памяти, формирование тонких временных связей в результате поведенческих действий (высшие формы торможения).
  3. Таламо-височная интегральная система обеспечивает высшею регуляцию со стороны коры вегетативных функций через интегративные центры ЦНС, прежде всего гипоталамус, миндалевидный комплекс, базальные ядра.

Список литературы:

1. Ноздрачев А.Д. Начала физиологии/ А.Д.Ноздрачев, Ю.И.Баженов, И.А.Баранников и др.-СПб.:Изд-во "Лань", 2002,-1088с.

2.Шмидт-Ниельсон К. Физиология животных: Приспособление и среда. Книга 1.- М: Мир, 1982,-416с.

3.Эволюционная физиология. Ч.1 / Под ред. акад. Е.М.Кребса. В серии: "Руководство по физиологии" - Л:"Наука", 1979,-603с.

Остановимся на вопросе об изменении относительного размера мозга млекопитающих.

Этот размер часто характеризуют коэффициентом энцефализации, который равен отношению объема мозга к условному объему, определяемому как произведение среднего эмпирического параметра на объем тела, возведенный в степень 2/3. Коэффициент энцефализации млекопитающих изменяется примерно от 0,1-0,2 для наиболее примитивных животных до значения около 6, относящегося к современному человеку.

Хотя коэффициент энцефализации или другие показатели, характеризующие объем мозга, по ряду причин могут служить только очень приближенной характеристикой уровня высшей

нервной деятельности животного, существуют возможности использования соответствующих материалов для получения важной информации о развитии интеллекта ископаемых животных.

Развитие головного мозга млекопитающих было длительным процессом, который происходил на протяжении всего третичного периода. Данные таблицы следует дополнить сведениями об эволюции размера мозга у мезозойских млекопитающих. Хотя получить такие сведения трудно из-за ограниченности материалов о сравнительно малочисленных млекопитающих мезозойской эры, Джерисон сделал вывод, что уже первые наиболее примитивные группы млекопитающих обладали мозгом, относительные размеры которого были больше мозга рептилий. Затем, на протяжении свыше ста миллионов лет относительный размер мозга млекопитающих существенно не изменялся и только в третичном периоде размер их головного мозга начал возрастать.

Джерисон считает, что средний коэффициент энцефализации Для архаических млекопитающих эоцена равнялся 0,25, для животных олигоцена 0,50, для современных 1,00. Наряду с этим он отмечает, что на протяжении третичного периода эволюция головного мозга сопровождалась возрастанием «дивертификации», т. е. диапазона изменений относительных величин мозга у различных групп животных.

Можно думать, что эволюция мозга млекопитающих существенно зависела от условий окружающей их среды. Дотретичные млекопитающие были небольшими по размеру ночными животными, которые активизировались в условиях более низкой температуры темного времени суток. Они, по-видимому, в малой степени конкурировали с господствовавшими тогда разнообразными пресмыкающимися. Быстрая эволюция млекопитающих, начавшаяся после произошедшего в конце мелового периода вымирания большинства групп рептилий, в начале третичного периода не сопровождалась заметным увеличением относительного размера мозга животных, так как млекопитающие могли без острой конкуренции с другими животными заполнять различные экологические ниши, освобожденные ранее вымершими пресмыкающимися.

Как отмечает Джерисон, значительные изменения в строении мозга млекопитающих произошли в позднем эоцене, когда структура головного мозга у многих млекопитающих существенно усложнилась. В позднем эоцене число семейств млекопитающих впервые приблизилось к максимуму, соответствующему «экологической емкости» биосферы. В этих условиях возможность появления новых семейств была ограничена необходимостью вытеснения ранее существовавших сходных в экологическом отношении групп, что могло осуществиться только при значительном прогрессе новых организмов. В такой ситуации появление новых семейств должно было сопровождаться вымиранием занимавших те же экологические ниши старых групп.

Это подтверждается данными таблицы, из которой видно, что в позднем эоцене скорости появления новых и вымирания старых семейств были высокими и почти одинаковыми по величине. Возрастание среднего объема головного мозга в олигоцене, о котором говорит Джерисон, вероятно, объясняется резким изменением природных условий, что, в частности, ускорило вымирание архаических форм, обладавших меньшим размером мозга.

Хотя изменения климата в миоцене и плиоцене были меньшими олигоценового похолодания, они усложняли задачу приспособления животных к меняющимся природным условиям, что способствовало выживанию животных с более высоким уровнем высшей нервной деятельности.

Из приведенных выше соображений следует, что развитие головного мозга ускоряется: а) при высоком уровне заполнения «экологической емкости» биосферы прогрессивными группами животных; б) при существенных изменениях природных условий.

Это заключение можно подтвердить, кроме приведенных выше данных, материалами об эволюции третичных животных на двух изолированных континентах - Южной Америке и Австралии.

Оба эти континента в третичном периоде размещались в основном в зоне низких широт, где климатические колебания были наименьшими. Как Южная Америка, так и Австралия в это время были изолированы от других континентов.

В Южной Америке основными группами плацентарных млекопитающих были разнообразные копытные. Джерисон отмечает, что на протяжении 50 млн. лет размер мозга этих животных практически не увеличился. Нечто подобное произошло в Австралии, населенной в основном сумчатыми животными.

Можно думать, что медленное развитие мозга животных на этих континентах объяснялось, с одной стороны, сравнительным постоянством природных условий, с другой - неполным использованием «экологического пространства», которое имелось для млекопитающих на этих континентах. В частности, в Южной Америке до конца третичного периода плацентарных хищников заменяли сумчатые, которые менее эффективно преследовали копытных животных. Внешнее сходство разнообразных сумчатых в Австралии с экологически аналогичными плацентарными животными других континентов отнюдь не означает, что сумчатые могли поддерживать характерный для плацентарных животных высокий уровень межвидовой конкуренции, способствующей значительной скорости эволюции.

К этому нужно добавить, что территории Южной Америки и Австралии были малы по сравнению с обширной системой связанных между собой континентов, которую составляли Африка, Евразия и Северная Америка. Так как возникновение новых групп животных основано на процессах, имеющих вероятностный характер, размер территории, на которой осуществляется соответствующий «эволюционный эксперимент», часто оказывается решающим фактором для его успешного завершения.

В заключение остановимся на эволюции мозга приматов.

Хотя низшие приматы имели сравнительно большой относительный размер мозга уже в палеогене, быстрое возрастание размера мозга началось с появлением высших приматов и в особенности человекообразных обезьян, ветвь которых отделилась от общего родословного дерева приматов в олигоцене. Тогда же или несколько позже образовалась ветвь обезьяноподобных предков человека.

У всех высших приматов относительный размер мозга заметно больше среднего для других современных групп млекопитающих, у австралопитеков и непосредственных предков человека этот размер был еще большим.

Можно думать, что скорость эволюции приматов существенно зависела от степени изменчивости окружающей их среды. Хотя приматы существовали на протяжении всего третичного периода, в течение его первой половины, когда условия окружающей среды были наиболее устойчивыми, прогресс этой группы млекопитающих был сравнительно невелик. Скорость эволюции приматов (в том числе скорость роста коэффициента энцефализации) резко возросла во второй половине третичного периода, в эпоху значительных колебаний природных условий, происходивших начиная с олигоцена.

Неоднократно высказывалось предположение о том, что происхождению современного человека способствовали резкие изменения природной среды, имевшие место в четвертичном периоде.

Представление о связи эволюции приматов с изменениями условий окружающей среды может быть использовано для ответа на вопрос о месте исходного центра антропогенеза. Как известно, по этому вопросу имеются две точки зрения. Соглашаясь, что первые этапы этого процесса происходили в низких широтах, часть ученых (в том числе Дарвин и Уоллес) считали центром антропогенеза Африку, где до настоящего времени сохранились наиболее близкие к человеку виды обезьян. Другие, основываясь на ряде палеонтологических находок, предполагали, что первые прямые предки человека появились в Южной Азии. Экологические соображения позволяют поддержать первый из этих взглядов.

Как указано выше, даже при крупных изменениях глобального климата температура в тропиках менялась сравнительно мало. Главный результат колебаний климата в тропиках - изменение режима осадков, которое во многих случаях было значительным.

Так как в Южной Азии преобладают условия избыточного увлажнения, влияние некоторого изменения сумм осадков на растительный покров и другие компоненты природной среды для основной части этой территории было сравнительно малосущественным.

Совершенно другие последствия имели колебания глобального климата в Африке, большая часть территории которой находится сейчас и находилась в прошлом в условиях умеренного, недостаточного и крайне недостаточного увлажнения. Колебания режима осадков в Африке неизбежно приводили к значительным изменениям границ природных зон, что сопровождалось разрушением старых экологических систем и открывало условия для возникновения новых форм экологических взаимоотношений между организмами. В таких условиях скорость эволюции многих групп живых существ, включая приматов, должна быть более высокой.

Принимая во внимание соображения, приведенные в этом и предыдущих разделах, можно сделать вывод, что возникновение ноосферы стало возможным в результате двух различных форм изменений состояния среды, окружающей организмы.

Первая из них - сравнительно медленные колебания газового состава атмосферы, в ходе которых заметно увеличивалось количество атмосферного кислорода. В эпохи повышения количества кислорода возникли многие прогрессивные группы животных, включая основные классы позвоночных. Вторая форма изменений окружающей среды - кратковременные резкие изменения термического режима, которые неоднократно приводили к вымиранию многочисленных групп животных, создавая возможность для широкого распространения более прогрессивных форм, сохранившихся в эпохи вымирания.

Можно высказать предположение, что при постоянных условиях окружающей среды эволюция была бы слишком медленной не только для создания ноосферы, но и для возникновения сколько-нибудь сложных организмов за время существования биосферы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Головной мозг млекопитающих разных отрядов имеет различные ступени дифференцировки внутреннего строения, отражающие этапы эволюции высшей нервной деятельности, пройденные млекопитающими в историческом развитии.

У клоачных головной мозг от личается лишь начальным этапом развития вторичного мозгового свода — неопаллиума он занимает лишь незначительную часть крыши переднего мозга. У сумчатых обонятельный отдел переднего мозга также составляет дно и боковые отделы полушарий и только крыша представлена новым сводом — неопаллиумом. Следующий этап — мозг насекомоядных и летучих мышей, у которых серая кора полушарий уже образует полный мозговой свод, а первичный свод (архипаллиум) сдвинут на медиальную поверхность полушарий в виде гиппокампа. Комиссуры неопаллиума имеют зачаточную форму петли проводящих путей: мозолистого тела (corpus callosum) и свода (fornix). У большинства плацентарных млекопитающих обонятельные рецепторы, как сказано выше, играют руководящую роль в их биологии, в отличие от птиц, у которых ведущую роль играет зрение. Поэтому обонятельные центры в головном мозге, сосредоточенные в обонятельных долях и в дне переднего мозга (стриатная система), развиты очень сильно.

Высокой степени развития достигают также зрительные и слуховые восприятия, центры которых сосредоточены в среднем мозге в области четверохолмия. Но сверх этого в серой коре полушарий развиваются вторичные ассоциативные высшие мозговые центры зрения и слуха (затылочные и височные доли полушарий). Высокой степени развития достигает у млекопитающих, так же как у птиц, двигательная функция конечностей, поэтому в коре полушарий обособляются особые вторичные двигательные центры.

С этими вторичными ассоциативными центрами связано мощное развитие в головном мозге млекопитающих новых отделов мозжечка: полушарий мозжечка, связанных поперечной комиссурой варолиева моста.

Самостоятельным путем развивался головной мозг в ряду млекопитающих — от насекомых к приматам и человеку. В этом ряду через полулемуров к лемурам и приматам наблюдается ослабление обонятельных центров, так как у всех древесных форм ведущее значение в биологии приобретает стереоскопическое зрение и слух. Другой важной особенностью преобразования головного мозга млекопитающих является приобретение складчатости коры полушарий в виде борозд и долек серой коры. У низших млекопитающих — насекомоядных, грызунов, зайцеобразных, летучих мышей — мозг гладкий. У высших появляется система мозговых борозд на полушариях переднего мозга и на мозжечке. Максимального развития достигает складчатость (доли и борозды) в мозге человека, где в коре сосредоточиваются все вторичные ассоциативные центры высшей нервной деятельности. Также мощного развития достигает складчатость коры у водных млекопитающих (ластоногих и китообразных) в связи с новыми функциями мозговой деятельности в воде.

Мозг любого живого существа - пожалуй, самый загадочный и малоизученный орган. Функционирование отдельных видов клеток и отделов мозга четко выяснено и описано, но объяснить, каким образом мозг функционирует как единое целое науке пока не удалось. Хотя, достоверности ради, надо сказать, что в последние годы прогресс в подобных исследованиях все-таки наблюдается.

  • метод абляции – заключается в удалении одного из отделов мозга и последующем наблюдении поведения организма;
  • транскраниальная магнитная стимуляция - оценка возбудимости головного мозга при помощи магнитных импульсов.
  • электрофизиология - регистрация электрических импульсов активности мозга;
  • электрическая стимуляция - стимуляция отдельных областей мозга с помощью электрических импульсов.

НаучФильм. Головной мозг

Размер головного мозга 20-ти разных живых существ, индекс энцефализации

Проводя исследования, ученые выяснили, что величина головного мозга дифференциируется у разных животных, причем наблюдается разное соотношение величины мозга и массы тела живого существа. Чем больше масса мозга относительно массы тела, тем больше мозговой ткани используется для решения познавательных задач. Поэтому было введено такое понятие, как коэффициент энцефализаии – относительное соотношение массы тела и величины мозга млекопитающего. Он высчитывается по формуле:

где m – масса мозга, г; M – масса тела, г.

Индекс энцефализации дает возможность изучить потенциальные возможности различных видов.

Размер мозга не влияет на интеллект

Следует детальнее рассмотреть эту аксиому на примерах животных разных классов и видов.

Классификация начинается самой большой цифрой (самым умным из животных) и продолжается в порядке спадания.

  1. Бутылконосый дельфин . Мозг весит 1550 г, коэффициент энцефализации составляет 4,14
  2. Лиса – 53г, коэффициент =1,6
  3. Слон – 7843 г, коэффициент = 1,3
  4. Собака – 64 г, коэффициент = 1,2
  5. Макака – 62г, коэффициент = 1,19
  6. Осел – 370г, коэффициент = 1,09
  7. Кошка – 35 г, коэффициент = 1,0
  8. Воробей – 1,0г, коэффициент = 0,86
  9. Жираф – 680г, коэффициент = 0,66
  10. Лошадь – 510г, коэффициент = 0,9
  11. Овца – 140г, коэффициент = 0,8
  12. Кашалот – 7800 г, коэффициент = 0,58
  13. Кролик – 12г, коэффициент = 0,4
  14. Крыса – 2г, коэффициент = 0,4
  15. Носорог – 500г, коэффициент = 0,37
  16. Еж – 3.3г, коэффициент = 0,3
  17. Мышь полевая – 0,2г, коэффициент = 0,22
  18. Зеленая ящерица 0,1г, коэффициент = 0,04
  19. Комнатная муха – 0,0002г, коэффициент = 0,02
  20. Гадюка – 0,1г, коэффициент = 0,005

Итак, самым похожим на человека по величине коэффициента энцефализации является дельфин.

Как видим, стереотип о невысоких умственных способностях, например, осла, жирафа и овцы не имеет под собой основания.

Интересный факт: у насекомых мозга нет, роль центральной нервной системы у них выполняют нервные узлы - ганглии. Теоретически, если таракан останется без головы, он умрет от того, что не сможет есть.

Доведено также, что мыслительные способности организма зависят не только от величины мозга, а в немалой степени – от числа связей между нейронами.

Предупреждение усыхания мозга у людей

Следует детальнее рассмотреть мозг человека, так как именно этот орган при более детальном изучении может дать ответы на вечные вопросы, касающиеся нашего развития и жизнедеятельности.

Мозг новорожденного весит 365 г, ребенка 2 лет – 930 г, 6 лет – 1211 г, взрослого человека – 1400 г. Коэффициент энцеффализации мозга человека возрастом более 18 лет равен 6,74.

Интересно, что существует различие между мозгом мужчины и женщины. Первые зарегистрированные исследования половых различий мозга провел Френсис Гаттон еще в 1882 году. Позднее ученые из авторитетных, всемирно известных исследовательских институтов доказали, что мозг мужчины в среднем на 125 гр. больше, чем мозг женщины. Кроме того, существуют так же расовые и национальные различия. К примеру, обладателями самого легкого мозга являются австралийцы – 1185 г, самого тяжелого – европейцы – 1375 г.. При том у англичан мозг весит в среднем – 1346 г, у французов – 1280 г, у корейцев – 1376 г, у японцев – 1313 г. Лидеры – немцы, их мозг весит 1425 г. Мозг у россиян меньше немецкого на 26 граммов. У афроамериканцев мозг в среднем весит 1223 г, это на 100 г меньше, чем у белокожего населения США.

В течении жизни мозг может менять свой вес в сторону усыхания. В основном, гиппокамп уменьшается у людей, страдающих от депрессии и шизофреников. В настоящее время ученым известно, одни участки мозга стареют быстрее, чем другие. Вследствие возрастных изменений, потеря в объеме может доходить до 10%. Как установили ученые из медицинского центра университета Раш, к и усыханию мозга в старшем воздасте приводит дефицит витамина В 12 , а так же такое заболевание, как сахарный диабет.

Как избежать этого и предупредить высыхание серого вещества?

Ответ прост: нужно почаще употреблять в пищу продукты, содержащие этот самый витамин В 12 . В самых больших количествах он содержится в молоке, яйцах, мясе, птице, рыбе.

Очень полезны в этом плане бобы, фасоль, бананы, зерновой хлеб – именно в этих продуктах содержатся глюциды (медленные углероды), которые замедляют процессы старения мозга. Следует заниматься спортом: даже незначительные нагрузки стимулируют насыщение крови кислородом, соответственно в мозг поступает значительно больше питательных веществ. Очень важно установить для себя правильное питание, основными правилами котрого является ограниченое количество сладкого, а так же разнообразие в пище: мозг не любит диеты, где в течении нескольких недель нужно питаться однообразно.

Только правильный подход к собственному образу жизни позволит сохранить молодость мозга и увеличить уровень IQ.

И других живых существ, поэтому его принято выделять в отдельный тип.

Различные млекопитающих отвечают за определенные процессы жизнедеятельности организма. Так, именно в промежуточном отделе головного мозга обрабатывается зрительная информация, поступающая к особи. Кроме того, процесс терморегуляции происходит именно благодаря контролю со стороны данного органа.

Бесперебойная работа эндокринной системы контролируется гипофизом, а вся полученная информация анализируется в среднем отделе мозга.

Для того чтобы сохранялось равновесие млекопитающего, а также баланс двигательной системы в общем, необходима работа мозжечка. А основные системы жизнедеятельности имеют свои центры управления, расположенные в продолговатом мозге.

Организм животного достаточно сложен, и считается, что интеллект его занимает второе место после человеческого. Об этом говорит не только строение головного мозга млекопитающего, но и масса по отношению к массе спинного мозга. Например, у рептилий спинной и головной мозг весят примерно одинаково, тогда как у животного масса головного мозга превышает спинной в три, а то и в пятнадцать раз, в зависимости от вида.

Отдельные зоны головного мозга у одного вида развиваются сильнее, у другого слабее, в зависимости от среды обитания животного. Например, если основное время суток жизни млекопитающего - ночь, то наиболее развито у такого животного зрение. Если речь идет об обитателе водоема либо болота, отмечено, что у такого млекопитающего будут сильно развиты слух и обоняние. Исключением считается кит, у которого система обоняния довольно слаба.

В головном мозге животного расположено 12 пар черепных нервов. Головные нервы млекопитающего отвечают не только за слух, зрение и обоняние, они также принимают непосредственное участие в формировании вегетативной системы.

Учеными доказано, что строение головного мозга млекопитающего формировалось миллионы лет. А прародителями современных животных были зверьки, имеющие охотничий инстинкт, добывающие себе пищу в ночное время с помощью хорошо развитого нюха и зрения. Если сравнивать с современным животным миром, то развитие их находилось примерно в середине между современными млекопитающими и рептилиями. Каким образом происходило формирование головного мозга, исследователям так до конца и не известно. Но именно благодаря такой степени развития, древним животным удалось, значительно видоизменившись, дожить до современных времен, а некоторым - стать незаменимыми помощниками человека.