Как в Excel решить систему линейных уравнений. Учимся программировать

Краткая теория из курса алгебры:

Пусть дана система линейных уравнений (1). Матричный способ решения систем линейных уравнений используется в тех случаях, когда число уравнений равно числу переменных.

Введем обозначения. Пусть А – матрица коэффициентов при переменных, B – вектор свободных членов, X – вектор значений переменных. Тогда X = A -1 × B , где А -1 – матрица, обратная А . Причем обратная матрица А -1 существует, если определитель матрицы А не равен 0. Произведение исходной матрицы А и обратной А -1 должно быть равно единичной матрице:

А -1 А=АА -1 =Е.

Задание : Решить систему линейных уравнений:

Технология работы:

Пусть на диапазоне А11:С13, задана исходная матрица А, составленная из коэффициентов системы. Сначала найдите определитель матрицы А. Для этого в ячейке F15 необходимо вызвать Мастер функций , В категории "Ссылки и массивы " найдите функцию МОПРЕД() , задайте ее аргумент A11:С13. Получили результат 344. Так как определитель исходной матрицы А не равен 0, т.е. существует обратная ей матрица, поэтому следующим этапом и будет нахождение обратной матрицы. Для этого выделите диапазон А15:С17, где будет размещаться обратная матрица. Вызвав Мастера функций , в категории "Ссылки и массивы " найдите функцию МОБР( ), задайте ее аргумент A11:С13 и нажмите Shift+Ctrl+Enter. Чтобы проверить правильность обратной матрицы, умножьте ее на исходную с помощью функции МУМНОЖ() . Вызовите эту функцию, предварительно выделив диапазон А19:А21. В качестве аргументов укажите исходную матрицу А, т.е. диапазон А11:С13 и обратную матрицу, т.е. диапазон А15:С17 и нажмите Shift+Ctrl+Enter. Получили единичную матрицу. Таким образом, обратная матрица найдена верно. Теперь для нахождения результата, выделите для него диапазон F18:F20. Вызовите функцию МУМНОЖ() , используя Мастера функций , укажите два массива-диапазона, которые будете перемножать − обратную матрицу и столбец свободных членов, т.е. А15:С17 и Е11:Е13 и нажмите Shift+Ctrl+Enter. Результат показан на рисунке 6.

Теперь можно произвести проверку правильности найденных решений х 1 , х 2 и х 3 . Для этого, выполните вычисление каждого уравнения, используя найденные значения х 1 , х 2 и х 3 . Например, в ячейке G11 подсчитайте значение , при этом результат должен быть равен 3. Введем следующую формулу =A11*$F$18+B11*$F$19+C11*$F$20 . Скопируйте эту формулу в две ячейки, расположенные ниже, т.е. в G12 и G13. Снова получите столбец свободных членов. Таким образом, решение системы линейных уравнений выполнено верно (рис.80).

Рисунок 80 - Решение системы линейных уравнений

Варианты индивидуальных заданий


Задание № 1. Средствами Microsoft Excel вычислить значение выражения:

Таблица 16 – Индивидуальные варианты лабораторной работы

Решение систем линейных алгебраических уравнений в Excel Методы решения систем линейных алгебраических уравнений хорошо описаны в учебнике "Основы вычислительной математики. Демидович Б.П., Марон И.А. 1966". Скачать - 11Мб

1. Метод обратной матрицы (решение в Excel)

Если дано уравнение:
A*X = B, где A - квадратная матрица, X,B - вектора;
причем B - известный вектор (т е столбец чисел), X - неизвестный вектор,
то решение X можно записать в виде:
X = A -1 *B, где A -1 - обратная от А матрица.
В MS Excel обратная матрица вычисляется функцией МОБР(), а перемножаются матрицы (или матрица на вектор) - функцией МУМНОЖ().

Имеются "тонкости" использования этих матричных действий в Excel. Так, чтобы вычислить обратную матрицу от матрицы А, нужно:

1. Мышкой выделить квадратную область клеток, где будет размещена обратная матрица. 2. Начать вписывать формулу =МОБР(3. Выделить мышкой матрицу А. При этом правее скобки впишется соответствующий диапазон клеток. 4. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 5. Должна вычислиться обратная матрица и заполнить предназначенную для неё область Чтобы умножить матрицу на вектор: 1. Мышкой выделить область клеток, где будет размещён результат умножения 2. Начать вписывать формулу =МУМНОЖ(3. Выделить мышкой матрицу - первый сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 4. С клавиатуры ввести разделитель; (точка с запятой) 5. Выделить мышкой вектор- второй сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 6. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 7. Должно вычислиться произведение и заполнить предназначенную для него область Есть и другой спососб, при котором используется кнопка построителя функции Excel. Пример СЛАУ 4-го порядка

Скачать документ Excel, в котором этот пример решён различными методами.

2. Метод Гаусса

Метод Гаусса подробно (по шагам) выполняется только в учебных целях, когда нужно показать, что Вы это умеете. А чтобы решить реальную СЛАУ, лучше применить в Excel метод обратной матрицы или воспользоваться специальными программами, например, этой

Краткое описание.

3. Метод Якоби (метод простых итераций)

Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.

(1)’ = (1) + 0,43*(2) - 0,18*(3) – 0,96*(4) (2)’ = (2) + 0,28*(1) – 1,73*(3) + 0,12*(4) (3)’ = (3) – 0,27*(1) - 0,75*(2) + 0,08*(4) (4)’ = (4) + 0,04*(1) – 6,50*(2) + 8,04*(3) Примечание: подбор коэффицентов выполнен на листе "Анализ". Решаются системы уравнений, цель которых - обратить внедиагональные элементы в нуль. Коэффиценты - это округлённые результаты решения таких систем уравнений. Конечно, это не дело. В результате получаю систему уравнений:
Для применения метода Якоби систему уравнений нужно преобразовать к виду:
X = B2 + A2*X Преобразую:

Далее делю каждую строку на множитель левого столбца, то есть на 16, 7, 3, 70 соответственно. Тогда матрица А2 имеет вид:


А вектор В2:


Решение систем линейных уравнений в Excel

1. Введение

Многие задачи организации строительного производства сводятся к решению систем линейных уравнений вида:

a 11x 1a 12x 2a 1n x n b 1,

a2 n xn

a 21x 1a 22x 2

n 1 1

называемой системой n линейных алгебраических уравнений(СЛАУ ) с n

неизвестными.

При этом произвольные числа a ij (i = 1, 2,…,n ;j = 1, 2,…,n ) называются

коэффициентами при неизвестных, а числа b i (i = 1, 2,…, n ) – свободными

членами.

Систему(1) можно записать в матричной форме

A X = B,

где A – матрица коэффициентов при неизвестных:

a2 n

an 1

an 1

an 1

an 1

X – вектор- столбец неизвестных X= (x1 , x2 , …, xn ) T :

B – вектор-столбец свободных членов:

b 2B ,

или B = (b 1 ,b 2 ,...,b n )T .

2. Операции с матрицами в Excel

В Excel для операций с матрицами служат функции из категории «Математические»:

1) МОПРЕД(матрица) – вычисление определителя матрицы, 2)МОБР(матрица) – вычисление обратной матрицы, 3)МУМНОЖ(матрица1;матрица2) – произведение матриц, 4)ТРАНСП(матрица) – транспонирование матрицы.

Первая из этих функций в качестве результатавозвращает число (определитель матрицы ), поэтомувводится как обычная формула (ENTER ).

Последние три возвращают блок ячеек, поэтому должны вводиться как формулы массива (CTRL+SHIFT+ENTER ).

Рассмотрим задачурешения СЛАУ на следующем примере

8x 1 2x 2 8x 3 24,

2x 1 2x 2 10x 3 48,

2x 1 4x 2 8x 3 18.

Матрица коэффициентов при неизвестных A (3) имеет вид

а вектор-столбец свободных членов (5)B = (–24, –48, 18)T .

Решим СЛАУ (7) в среде MS Excel тремя различными способами.

Матричный способ решения (обратной матрицы)

Обе части матричного равенства (2) умножим на обратную матрицу А -1 . Получим A –1 A X =A –1 B . Так как A –1 A =E , гдеE – единичная матрица (диагональная матрица, у которой по главной диагонали расположены единицы). Тогда решение системы (2) запишется в следующем виде

МУМНОЖ(матрица1;матрица2), завершая в каждом случае ввод комбинацией

CTRL+SHIFT+ENTER.

Метод Крамера

Решение СЛАУ находится по формулам Крамера

det A

det A

det A 2

det A

det A

det A

где det A =A – определитель матрицы (3) системы (главный определитель), detA i =A i (i = 1, 2, …,n )– определители матрицA i (вспомогательные определители), которые получаются изA заменой i -го столбца на столбец свободных членовB (5).

Для рассматриваемой СЛАУ (7) вспомогательные матрицы имеют следующий вид

A 148

Разместим их на рабочем листе (рис. 1).

Аналогичная формула (=МОПРЕД(A3:C5) ) для вычисления определителя матрицыA записана в ячейкуE8 . Осталось найти решение системы. Соответствующие формулы Excel запишем в интервал решенияB7:B9 (рис. 3), в котором и увидим результат (рис. 4).

Обратите внимание на то (рис. 3), что при вычислении x i (i = 1, 2, 3)

анализируется значение определителя матрицы системы A , вычисленное в ячейке E8, и, если оно равно нулю, то в B7 помещается текст« Решения нет», а в ячейки B8 и B9 – пустые строки.

3. Решение СЛАУ с использованием инструмента Поиск решения

Широкий класс производственных задач составляют задачи оптимизации. Задачи оптимизации предполагают поиск значений аргументов, доставляющих функции, которую называют целевой , минимальное или максимальное значение при наличии каких-либо дополнительных ограничений. Excel располагает мощным средством для решения оптимизационных задач.

Это инструмент-надстройка, который называетсяПоиск решения (Solver )

(доступен через менюСервис  Поиск решения ) .

Задачу решения СЛАУ можно свести к оптимизационной задаче.

Для чего одно из уравнений (например, первое) взять в качестве целевой функции, а оставшиеся n -1 рассматривать в качестве ограничений.

Запишем систему(1) в виде

a 11x 1a 12x 2a 1n x n b 10,

a2 n xn

a 21x 1a 22x 2

b 0.

n 1 1

Для решения этой задачи необходимо записать выражения (формулы) для вычисления значений функций, стоящих слева в уравнениях системы (12). Отведем для примера под эти формулы интервал C7:C9 . В ячейкуC7 введем формулу =A3*$B$7+B3*$B$8+C3*$B$9-D3 и скопируем ее в оставшиесяC8 иC9 . В них появятся соответственно =A4*$B$7+B4*$B$8+C4*$B$9-D4 и =A5*$B$7+B5*$B$8+C5*$B$9-D5 .

В окне диалога Поиск решения (рис. 5) задать параметры поиска (установить целевую ячейкуC7 равной нулю, решение в изменяемых ячейкахB7:B9 , ограничения заданы формулами в ячейкахC8 и С9 ). После щелчка по кнопкеВыполнить в

интервале B7:B9 получим результат (рис. 6) – решение СЛАУ.

В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

Рассмотрим на примерах некоторые варианты решений.

Решение уравнений методом подбора параметров Excel

Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

Путь к команде: «Данные» - «Работа с данными» - «Анализ «что-если»» - «Подбор параметра».

Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:


Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».



Как решить систему уравнений матричным методом в Excel

Дана система уравнений:


Получены корни уравнений.

Решение системы уравнений методом Крамера в Excel

Возьмем систему уравнений из предыдущего примера:

Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

Определитель системы больше 0 – решение можно найти по формуле Крамера (D x / |A|).

Для расчета Х 1: =U2/$U$1, где U2 – D1. Для расчета Х 2: =U3/$U$1. И т.д. Получим корни уравнений:

Решение систем уравнений методом Гаусса в Excel

Для примера возьмем простейшую систему уравнений:

3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9

Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

Примеры решения уравнений методом итераций в Excel

Вычисления в книге должны быть настроены следующим образом:


Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

Х n+1 = X n – F (X n) / M, n = 0, 1, 2, … .

M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

f’ (1) = -2 * f’ (2) = -11.

Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.

В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

Корень на заданном промежутке один.

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

14x1 +2x2 +8x4 =218
7x1 -3x2 +5x3 +12x4 =213
5x1 +x2 -2x3 +4x4 =83
6x1 +2x2 +x3 -3x4 =21

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1 . Обозначаем полученную таблицу, как вектор A .
  2. Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B .
  3. Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР . Он имеет довольно простой синтаксис:

    МОБР(массив)

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию» , расположенную около строки формул.

  4. Выполняется запуск Мастера функций . Переходим в категорию «Математические» . В представившемся списке ищем наименование «МОБР» . После того, как оно отыскано, выделяем его и жмем на кнопку «OK» .
  5. МОБР . Оно по числу аргументов имеет всего одно поле – «Массив» . Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK» , но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter . Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter , а произвести набор сочетания клавиш Ctrl+Shift+Enter . Выполняем эту операцию.
  6. Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
  7. Теперь нам нужно будет умножить обратную матрицу на матрицу B , которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ . Данный оператор имеет следующий синтаксис:

    МУМНОЖ(Массив1;Массив2)

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций , нажав значок «Вставить функцию» .

  8. В категории «Математические» , запустившегося Мастера функций , выделяем наименование «МУМНОЖ» и жмем на кнопку «OK» .
  9. Активируется окно аргументов функции МУМНОЖ . В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2» , только на этот раз выделяем значения колонки B . После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter , а набираем комбинацию клавиш Ctrl+Shift+Enter .
  10. После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1 , X2 , X3 и X4 . Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.

Способ 2: подбор параметров

Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение


Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x .

Способ 3: метод Крамера

Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1 :

14x1 +2x2 +8x4 =218
7x1 -3x2 +5x3 +12x4 =213
5x1 +x2 -2x3 +4x4 =83
6x1 +2x2 +x3 -3x4 =21

  1. Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно» .
  2. Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A , только у этих копий поочередно один столбец заменен на таблицу B . У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
  3. Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД . Синтаксис данного оператора следующий:

    МОПРЕД(массив)

    Таким образом, как и у функции МОБР , единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию» .

  4. Активируется окно Мастера функций . Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД» . После этого жмем на кнопку «OK» .
  5. Запускается окно аргументов функции МОПРЕД . Как видим, оно имеет только одно поле – «Массив» . В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK» . Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter .
  6. Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740 , то есть, не является равным нулю, что нам подходит.
  7. Аналогичным образом производим подсчет определителей для остальных трех таблиц.
  8. На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
  9. Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148 , которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5 , 14 , 8 и 15 . Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1 , что подтверждает правильность решения системы уравнений.

Способ 4: метод Гаусса

Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

14x1 +2x2 +8x3 =110
7x1 -3x2 +5x3 =32
5x1 +x2 -2x3 =17

  1. Опять последовательно записываем коэффициенты в таблицу A , а свободные члены, расположенные после знака «равно» — в таблицу B . Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
  2. Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    B8:E8-$B$7:$E$7*(B8/$B$7)

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter . К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

  3. После этого копируем полученную строку и вставляем её в строчку ниже.
  4. Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать» , которая расположена на ленте во вкладке «Главная» .
  5. Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка» . В запустившемся дополнительном списке выбираем позицию «Значения» .
  6. В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    B13:E13-$B$12:$E$12*(C13/$C$12)

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter .

  7. Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter .

  8. Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    =(B16:E16-B21:E21*D16)/C16

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

  9. Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    =(B15:E15-B20:E20*C15-B21:E21*D15)/B15

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter .

  10. Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4 , 7 и 5 ) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1 , X2 и X3 в выражения.

Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.