Искусственные органы: прошлое, настоящее и будущее. Искусственные механические органы искусственных органов для создания настоящего человека

Успехи биологии и медицины в новейшей истории существенно продлили среднюю продолжительность жизни и избавили мир от дамоклова меча многих смертельных болезней. Но не все болезни побеждены, да и жизнь человека, тем более активная, все еще кажется нам слишком короткой. Даст ли наука шанс сделать следующий рывок?

Новая кожа Сотрудник лаборатории достает из ванночки полоску искусственно выращенного эпидермиса. Ткань создали в дерматологическом институте в итальянском городе Помеция, Италия, под руководством профессора Микеле де Лука.

Олег Макаров

Основания для оптимизма, конечно же, есть. В наши дни в науке наметилось несколько направлений, которые, возможно, позволят в близком или дальнем будущем превратить Homo sapiens в более долговечную и надежную мыслящую конструкцию. Первое — это создание электронно-механических «подпорок» для недужного тела. Речь идет о роботизированных бионических протезах конечностей, достоверно воспроизводящих человеческую локомоторику, или даже целых экзоскелетах, которые смогут подарить радость движения парализованным.


Выращивание нервной ткани — наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток.

Эти хитроумные изделия дополнит нейромашинный интерфейс, который позволит считывать команды прямо с соответствующих участков головного мозга. Действующие прототипы подобных устройств уже созданы, теперь главное — их совершенствование и постепенное удешевление.

Вторым направлением можно считать исследования генетических и прочих микробиологических процессов, вызывающих старение. Познание этих процессов, возможно, в будущем даст возможность затормозить увядание организма и продлить активную жизнь за вековой предел, а возможно, и далее.


Поиски ведутся в нескольких направлениях. Одно из них — бионический глаз: электронная камера плюс чип, имплантированный в сетчатку. Есть и некоторые успехи в выращивании сетчатки (пока у мышей).

И наконец, к третьему направлению относятся исследования в области создания подлинных запчастей к человеческому телу — тканей и органов, которые структурно и функционально будут мало чем отличаться от природных и позволят своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Известия о новых шагах в этой области приходят сегодня едва ли не ежедневно.

Запускаем печать

Базовая технология выращивания органов, или тканевой инженерии, заключается в использовании эмбриональных стволовых клеток для получения специализированных клеток той или иной ткани, например гепатоцитов — клеток паренхимы (внутренней среды) печени. Эти клетки затем помещаются внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.


Наряду с созданием электронно-механических протезов ведется поиск более естественного имплантата, объединяющего в себе выращенные ткани сердечной мускулатуры с наноэлектронной системой контроля.

Таким образом обеспечивается заполнение клетками всего объема выращиваемого органа. Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или, что гораздо проще и удобнее, создать ее искусственным путем из биоразрушаемых полимеров или специальной керамики, если речь идет о кости. В матрицу помимо клеток вводятся питательные вещества и факторы роста, после чего клетки формируют единый орган или некую «заплатку», призванную заместить собой пораженную часть.

Правда, выращивание искусственной печени, легкого и других жизненно важных органов для пересадки человеку сегодня пока недостижимо, в более простых случаях такая методика успешно применяется. Известен случай пересадки пациентке выращенной трахеи, осуществленной в РНЦ хирургии им. Б.В. Петровского под руководством итальянского профессора П. Маккиарини. В данном случае в качестве основы была взята донорская трахея, которую тщательно очистили от клеток. На их место были введены стволовые клетки, взятые из костного мозга самой пациентки. Туда же были помещены факторы роста и фрагменты слизистой оболочки — их также позаимствовали из поврежденной трахеи женщины, которую предстояло спасти.


Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Недифференцированные клетки в таких условиях дали начало клетками дыхательного эпителия. Выращенный орган имплантировали пациентке, причем были приняты специальные меры для проращивания имплантата кровеносными сосудами и восстановления кровообращения.

Впрочем, уже существует метод выращивания тканей без применения матриц искусственного или биологического происхождения. Метод нашел воплощение в устройстве, известном как биопринтер. В наши дни биопринтеры «выходят из возраста» опытных образцов, и появляются мелкосерийные модели. Например, аппарат компании Organovo способен распечатать фрагменты тканей, содержащих 20 и более клеточных слоев (причем туда входят клетки разных типов), объединенных межклеточной тканью и сетью кровеносных капилляров.


До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены методом выращивания на матрице из биоразлагаемых полимеров. Такие имплантаты смогут помочь в восстановлении пораженных участков.

Соединительная ткань и клетки собираются воедино по той же технологии, которую используют при трехмерной печати: движущаяся головка, позиционирующаяся с микронной точностью в трехмерной сети координат, «выплевывает» в нужную точку капельки, содержащие либо клетки, либо коллаген и другие вещества. Разные производители биопринтеров сообщили, что их устройства уже способны распечатывать фрагменты кожи подопытных животных, а также элементы почечной ткани. Причем в результате удалось достичь правильного расположения клеток разных типов друг относительно друга. Правда, эпохи, когда принтеры в клиниках будут способны создавать органы разного назначения и больших объемов, придется еще подождать.


Мозг под замену

Развитие темы запчастей для человека неизбежно приводит нас к теме самого сокровенного — того, что делает человека человеком. Замена мозга — пожалуй, самая фантастическая идея, касающаяся потенциального бессмертия. Проблема, как нетрудно догадаться, в том, что мозг — похоже, самый сложный из известных человечеству материальных объектов во Вселенной. И, возможно, один из самых непонятных. Известно, из чего он состоит, но очень мало известно о том, как он работает.


Новая кожа. Сотрудник лаборатории достает из ванночки полоску искусственно выращенного эпидермиса. Ткань создали в дерматологическом институте в г. Помеция, Италия, под руководством профессора Микеле де Лука.

Таким образом, если мозг удастся воссоздать как совокупность нейронов, устанавливающих друг с другом связи, надо еще придумать, как поместить в него всю необходимую человеку информацию. Иначе в лучшем случае мы получим взрослого человека с «серым веществом» младенца. Несмотря на всю сверхфантастичность конечной цели, наука активно работает над проблемой регенерации нервной ткани. В конце концов, цель может быть и скромнее — например, восстановление части мозга, разрушенной в результате травмы или тяжелого заболевания.

Проблема искусственной регенерации мозговой ткани усугубляется тем, что мозг обладает высокой гетерогенностью: в нем присутствует множество типов нервных клеток, в частности тормозные и возбуждающие нейроны и нейроглия (буквально — «нервный клей») — совокупность вспомогательных клеток нервной системы. Кроме того, разные типы клеток определенным образом расположены в трехмерном пространстве, и это расположение необходимо воспроизвести.


Это тот самый случай, когда технологии выращивания тканей уже работают в медицине и спасают жизни людей. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток спинного мозга пациента.

Нервный чип

В одной из лабораторий знаменитого Массачусетского технологического института, известного своими разработками в сфере информационных технологий, подошли к созданию искусственной нервной ткани «по-компьютерному», применив элементы технологии изготовления микрочипов.

Исследователи из Бостона взяли смесь нервных клеток, полученных из первичной коры мозга крысы, и нанесли их на тончайшие пластины гидрогеля. Пластины образовали своего рода сэндвич, и теперь задача состояла в том, чтобы вычленить из него отдельные блоки с заданной пространственной структурой. Получив такие прозрачные блоки, ученые намеревались изучать процессы возникновения нервных связей внутри каждого из них.


Технология пересадки человеку мочевого пузыря, выращенного на коллагеновой матрицы из мочевого пузыря или тонкой кишки животного происхождения, уже создана и имеет положительную практику применения.

Задача была решена с помощью фотолитографии. На пласты гидрогеля накладывались пластиковые маски, которые позволяли свету воздействовать лишь на определенные участки, «сваривая» их воедино. Так удалось получить разнообразные по размерам и толщине композиции клеточного материала. Изучение этих «кирпичиков» со временем может привести к созданию значимых фрагментов нервной ткани для использования в имплантах.

Если инженеры MIT подходят к изучению и воссозданию нервной ткани в инженерном стиле, то есть механически формируя нужные структуры, то в Центре биологии развития RIKEN в японском городе Кобе ученые под руководством профессора Йошики Сасаи нащупывают другой путь — evo-devo, путь эволюции развития. Если плюрипотентные стволовые клетки эмбриона могут при делении создавать самоорганизующиеся структуры специализированных клеток (то есть разнообразные органы и ткани), то нельзя ли, постигнув законы такого развития, направлять работу стволовых клеток для создания имплантатов уже с природными формами?


В деле выращивания костей и хрящей на матрицах достигнут большой прогресс, однако восстановление нервной ткани спинного мозга — дело будущего.

И вот главный вопрос, на который намеревались найти ответ японские биологи: насколько зависит развитие конкретных клеток от внешних факторов (например, от контакта с соседними тканями), а в какой степени программа «зашита» внутри самих стволовых клеток. Исследования показали, что есть возможность вырастить из изолированной группы стволовых клеток заданный специализированный элемент организма, хотя внешние факторы играют определенную роль — например, необходимы определенные химические индуцирующие сигналы, заставляющие стволовые клетки развиваться, скажем, именно как нервная ткань. И для этого не понадобится никаких поддерживающих структур, которые придется наполнять клетками — формы возникнут сами в процессе развития, в ходе деления клеток.

В новом теле

Вопрос о пересадке мозга, коль скоро мозг является вместилищем интеллекта и самого человеческого «я», по сути, не имеет смысла, так как если мозг уничтожен, то воссоздать личность невозможно (если только со временем не научатся делать «резервные копии» сознания). Единственное, что могло бы иметь резон - это пересадка головы, а точнее — пересадка тела голове, у которой с телом проблемы. Однако при невозможности на современном уровне медицины восстановления спинного мозга, тело с новой головой останется парализованным. Правда, по мере развития тканевой инженерии, возможно, нервную ткань спинного мозга можно будет восстанавливать с помощью стволовых клеток. На время операции мозг придется резко охлаждать для предотвращения смерти нейронов.

По запатентованной Сасаи методике японцам удалось вырастить трехмерные структуры нервной ткани, первой из которых стала полученная из эмбриональных стволовых клеток мышей сетчатка глаза (так называемый зрительный бокал), которая состояла из функционально различных типов клеток. Они были расположены так, как предписывает природа. Следующим достижением стал аденогипофиз, не просто повторяющий структуру природного, но и выделяющий при пересадке мыши необходимые гормоны.


Разумеется, до полнофункциональных имплантов нервной ткани, а тем более участков человеческого мозга еще очень и очень далеко. Однако успехи искусственной регенерации тканей с применением технологий эволюции развития указывают путь, по которому пойдет вся регенеративная медицина: от «умных» протезов — к композитным имплантатам, в которых готовые пространственные структуры «проращиваются» клеточным материалом, и далее — к выращиванию запасных частей для человека по тем же законам, по которым они развиваются в естественных условиях.

21/06/2017

Искусственное выращивание органов может спасти миллионы человеческих жизней. Регулярно поступающие новости из сферы регенеративной медицины звучат обнадеживающе и многообещающе. Кажется, что уже не за горами тот день, когда биоинженерные ткани и органы будут так же доступны, как запчасти к автомобилям

Успехи регенеративной медицины

Методы терапии с использованием клеточных технологий уже многие годы успешно применяют во врачебной практике. Созданы и успешно используются искусственные органы и ткани, полученные с помощью методов клеточной терапии и тканевой инженерии. К практическим достижениям в области регенеративной биомедицины относится выращивание хрящевых тканей, мочевого пузыря, уретры, сердечных клапанов, трахеи, роговицы и кожи. Удалось вырастить искусственный зуб, пока только в организме крысы, но стоматологам стоит задуматься о кардинально новых подходах. Была разработана технология восстановления гортани после операции по ее удалению и уже выполнено много таких операций. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток пациента. В течение многих лет осуществляют трансплантацию искусственной роговицы.

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы

Самыми простыми для выращивания оказались хрящевая ткань и кожа. В деле выращивания костей и хрящей на матрицах достигнут большой прогресс. Следующий уровень по сложности занимают кровеносные сосуды. На третьем уровне оказались мочевой пузырь и матка. Но эта ступень уже пройдена в 2000–2005 гг., после успешного завершения ряда операций по трансплантации искусственного мочевого пузыря и уретры. Тканевые имплантаты вагины, выращенные в лаборатории из мышечных и эпителиальных клеток пациенток, не только успешно прижились, сформировав нервы и сосуды, но и нормально функционируют уже около 10 лет.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов. До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены с помощью метода выращивания на матрице из биоразлагаемых полимеров. И хотя успехи очевидны, замена таких жизненно важных органов, как сердце или печень, их выращенными аналогами - все-таки дело будущего, хотя, возможно, и не очень далекого.

Матрицы для органов

Нетканые губчатые матрицы для органов делают из биоразрушаемых полимеров молочной и гликолевой кислот, полилактона и многих других веществ. Большие перспективы и у гелеобразных матриц, в которые, кроме питательных веществ, можно вводить факторы роста и другие индукторы дифференцировки клеток в виде трехмерной мозаики, соответствующей структуре будущего органа. А когда этот орган сформируется, гель бесследно рассасывается. Для создания каркаса также используют полидиметилсилоксан, который можно заселить клетками любой ткани.

Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей

Следующий шаг - это выстилание внутренней поверхности полимера незрелыми клетками, которые затем образуют стенки кровеносных сосудов. Далее другие клетки желаемой ткани по мере размножения будут замещать биоразлагаемую матрицу. Перспективным считается использование донорского каркаса, определяющего форму и структуру органа. В экспериментах сердце крысы помещали в специальный раствор, с помощью которого удаляли клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Очищенный каркас засеивали новыми клетками сердечной мышцы и помещали в среду, имитирующую условия в организме. Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь. С помощью этого же метода на донорском каркасе была выращена новая печень, которую затем пересадили в организм крысы.

Базовая технология выращивания органов

Пожалуй, нет ни одной биологической ткани, к попыткам синтезирования которой не приступила бы современная наука. Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей. Эти клетки затем помещают внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.

Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или создать ее искусственным путем из биоразрушаемых полимеров либо специальной керамики, если речь идет о костях. В матрицу помимо клеток вводят питательные вещества и факторы роста, после чего клетки формируют целый орган или его фрагмент. В биореакторе удалось вырастить мышечную ткань с готовой кровеносной системой.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов

Эмбриональные стволовые клетки человека индуцировали к дифференцировке в миобласты, фибробласты и клетки эндотелия. Прорастая вдоль микротрубочек матрицы, эндотелиальные клетки сформировали русла капилляров, вошли в контакт с фибробластами и заставили их переродиться в гладкомышечную ткань. Фибробласты выделили фактор роста сосудистого эндотелия, который способствовал дальнейшему развитию кровеносных сосудов. При пересадке мышам и крысам такие мышцы приживались намного лучше, чем участки ткани, состоящие из одних мышечных волокон.

Органоиды

Используя трехмерные клеточные культуры, удалось создать простую, но вполне функциональную печень человека. В совместной культуре эндотелиальных и мезенхимальных клеток при достижении определенного соотношения начинается их самоорганизация и образуются трехмерные шарообразные структуры, представляющие собой зачаток печени. Через 48 ч после трансплантации этих фрагментов в организм мышей устанавливаются связи с кровеносными сосудами и внедренные части способны выполнять характерные для печени функции. Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Воздействуя на сигнальные пути индуцированных плюрипотентных стволовых клеток, удалось получить органоиды легких человека, состоящие из эпителиальных и мезенхимальных компартментов со структурными особенностями, характерными для легочных тканей. Биоинженерные зародыши подчелюстных слюнных желез, сконструированные in vitro , после трансплантации способны развиваться в зрелую железу путем формирования гроздьевидных отростков с мышечным эпителием и иннервацией.

Разработаны 3D-органоиды глазного яблока и сетчатки глаза с фоторецепторными клетками: палочками и колбочками. Из недифференцированных эмбриональных клеток лягушки вырастили глазное яблоко и вживили его в глазную полость головастика. Через неделю после операции симптомы отторжения отсутствовали, и анализ показал, что новый глаз полностью интегрировался в нервную систему и способен передавать нервные импульсы.

А в 2000 г. опубликованы данные о создании глазных яблок, выращенных из недифференцированных эмбриональных клеток. Выращивание нервной ткани наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток. Создана трехмерная культура органоидов клеток головного мозга, полученных из плюрипотентных стволовых клеток.

Напечатанные органы

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы. Принтер способен с высокой скоростью наносить живые клетки на любую подходящую подложку, в качестве которой используют термообратимый гель. При температуре ниже 20 °С он представляет собой жидкость, а при нагреве выше 32 °С затвердевает. Причем печать осуществляется «из материала заказчика», то есть из растворов живых клеточных культур, выращенных из клеток пациента. Клетки, напыляемые принтером, через некоторое время сами срастаются. Тончайшие слои геля придают конструкции прочность, а затем гель можно легко удалить с помощью воды. Однако чтобы таким способом можно было сформировать функционирующий орган, содержащий клетки нескольких типов, необходимо преодолеть ряд сложностей. Механизм контроля, за счет которого делящиеся клетки формируют правильные структуры, еще не понятен до конца. Однако представляется, что несмотря на сложность этих задач, они все же решаемы и у нас есть все основания верить в стремительное развитие медицины нового типа.

Биобезопасность применения плюрипотентных клеток

От регенеративной медицины ждут очень многого и вместе с тем развитие этого направления порождает множество морально-этических, медицинских и нормативно-правовых вопросов. Очень важной проблемой является биобезопасность применения плюрипотентных стволовых клеток. Уже научились перепрограммировать клетки крови и кожи c помощью факторов транскрипции в индуцированные стволовые плюрипотентные клетки. Полученные культуры стволовых клеток пациента в дальнейшем могут развиваться в нейроны, ткани кожных покровов, клетки крови и печени. Следует помнить, что во взрослом здоровом организме плюрипотентных клеток нет, но они могут спонтанно возникать при саркоме и тератокарциноме. Соответственно, если ввести в организм плюрипотентные клетки или клетки с индуцированной плюрипотентностью, то они могут спровоцировать развитие злокачественных опухолей. Поэтому необходима полная уверенность в том, что в трансплантируемом пациенту биоматериале таких клеток не содержится. Сейчас разрабатываются технологии, позволяющие прямо получить клетки тканей определенного типа, минуя состояние плюрипотентности.

В XXI в. с развитием новых технологий медицина обязана перейти на качественно новый уровень, который позволит своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Хочется верить, что совсем скоро выращивать органы прямо в операционной из клеток пациента будет так же просто, как цветы в оранжереях. Надежду подкрепляет то, что технологии выращивания тканей уже работают в медицине и спасают жизни людей.

Новую, значительно усовершенствованную модель трехмерного принтера для печати органов. С его помощью удалось создать искусственную модель кости черепа, ухо и мышцу. Причем все органы, пересаженные лабораторным животным, прижились. Мы решили вспомнить, какие еще органы и ткани ученые уже умеют создавать искусственно, и как это делается сегодня.

Практически любой орган человека состоит из трех тесно связанных структур. Во-первых, это соединительнотканный внеклеточный матрикс — разветвленная сеть коллагеновых волокон, которая придает органу форму и плотность, а также служит каркасом для клеток. Во-вторых, это клетки, благодаря которым орган выполняет свои биологические функции (во многих органах присутствуют несколько типов клеток). В-третьих, это сосудистая сеть, которая приносит артериальную кровь, насыщает ткани кислородом и питательными веществами, забирая у них углекислый газ и продукты обмена. Создание каждой из этих структур представляет отдельную сложную задачу тканевой инженерии.

Придать форму

Для получения внеклеточного матрикса используют два принципиально разных подхода. Можно создавать его с нуля — брать подходящий материал и, придумывая инженерные ухищрения, придавать ему нужную структуру. Альтернативный путь — взять «готовый» орган животного или мертвого донора и очистить его от всего лишнего, оставив только чистый каркас, свободный от клеток и не вызывающий реакции отторжения. Каждый из этих методов имеет достоинства и недостатки.

Искусственный матрикс синтезируют из синтетических и природных веществ. Из первых чаще всего используют полилактид (полимер молочной кислоты), полигликолевую кислоту и поликапролактон. Все они со временем рассасываются в организме без выделения вредных веществ, замещаясь натуральным внеклеточным матриксом. Природные материалы имеют белковую (например, коллаген) или углеводную (например, гиалуроновая кислота) природу. Для придания материалам нужной трехмерной сетчатой структуры в экспериментах и на практике используют множество способов (самосборку нановолокон, текстильные технологии, частичное растворение, вспенивание, электроспиннинг, трехмерная печать и другие). Эти методы не воспроизводят тонкостей микроструктуры органа и не формируют каркас для сосудистой сети. Поэтому они подходят лишь для органов с относительно простым строением — кожи, сосудов, хрящей и т.п.

Наиболее перспективная на данный момент технология получения внеклеточного каркаса сложных органов, например, сердца или почки — это децеллюляризация (очистка от клеток) соответствующего органа мертвого донора или подходящего по размеру животного (чаще всего свиньи). Для этого через сосуды органа медленно, в течение нескольких дней пропускают раствор моющего средства возрастающей концентрации. Когда все клетки удалены, матрикс промывают, и он готов к заселению клетками нового хозяина. Метод хорош и тем, что бесклеточный матрикс состоит из природного материала, который обеспечивает правильное прикрепление и пролиферацию клеток. Основной недостаток этой технологии заключается в том, что она разрушает микрососудистую сеть — капилляры, фактически состоящие из одного слоя эндотелиальных клеток, удаляются при промывании.

Из-за этого до клинического применения пока дошли только созданные таким методом дыхательные пути, а менее совершенное, на первый взгляд, искусственное получение матрикса уже используется в практическом и экспериментальном протезировании.

Заставить работать

Функциональную ткань изначально наращивали на матрикс, погружая его в питательный раствор с клетками и факторами роста. В последнее время все чаще с этой целью используют гидрогели, которые, застывая, обеспечивают равномерное распределение клеток, их лучшее закрепление и диффузию питательных веществ и газов. При использовании децеллюляризированного донорского матрикса раствор клеток и факторов роста пропускают через его сосуды.

Отдельную проблему представляет размножение и выживание клеток — в дифференцированной ткани их возможность делиться и развиваться ограничена длиной теломер («насадок» на концах молекул ДНК, необходимых для ее репликации, которые укорачиваются с каждым делением клетки). Решением этой проблемы может стать использование индуцированных плюрипотентных стволовых клеток, которые по способности пролиферировать и дифференцироваться близки к эмбриональным стволовым клеткам.

Снабдить воздухом и пищей

Создание сосудистой сети, как уже говорилось, представляет собой одну из наиболее сложных задач. Ни один из существующих методов не обеспечивает достаточной плотности и функциональности — капилляры либо протекают, либо их слишком мало для кровоснабжения органа (а чаще и то, и другое). Преодолеть эту проблему различными способами пытаются многие лаборатории мира. Более-менее обнадеживающие предварительные результаты получены при использовании микрожидкостных устройств из биорастворимых материалов, однако полноценную сосудистую сеть целого органа таким способом пока создать не удалось.

Оригинальное решение недавно предложили сотрудники американского Университета Вандербильта. Они получили полимерную сеть с толщиной волокон, близкой к капиллярам, с помощью аппарата для изготовления сладкой ваты. Затем эту сеть заливали гидрогелем с клетками и после его застывания вымывали полимер и пропускали через получившиеся микрососуды питательный раствор. Эта методика пока находится на начальных этапах разработки; полученный гидрогель с живыми клетками и сосудами не имеет внеклеточного матрикса.

Используя бесклеточный матрикс для восстановления кожи и собственные клетки пациента, японские исследователи вырастили на питательной среде и успешно пересадили пациентам слизистую оболочку ротовой полости.

Еще одна ткань, сравнительно простая для создания методом тканевой инженерии — это хрящ. У взрослого человека он практически не кровоснабжается, из-за чего не восстанавливается. Однако крайне низкая потребность зрелого хряща в кислороде и питании существенно облегчает работу с ним — не приходится обеспечивать рост сосудов, поскольку хрящевая ткань получает все необходимое путем диффузии. В 2006 году сотрудники Бристольского университета успешновосстановили поврежденные коленные суставы с помощью искусственных хрящей, выращенных из клеток пациентов на матриксе из гиалуроновой кислоты.

Искусственно выращенная хрящевая ткань применялась еще в одной серии экспериментов на людях, и то с сомнительным результатом. Речь идет о работе хирурга Паоло Маккиарини, выполненной на базе Барселонского университета в Испании, Каролинского института в Швеции и Кубанского медицинского университета в Краснодаре. Он пересаживал трахеи и бронхи, выращенные на децеллюляризованном матриксе мертвых доноров из собственных мезенхимальных стволовых и эпителиальных клеток пациентов. После обвинений в нарушении этики проведения исследований и на основании данных о высокой смертности реципиентов Каролинский институт принял решение уволить Маккиарини.

Также следует упомянуть о работе Стивена Бадилака (Stephen Badylak) из Университета Питтсбурга. Он использовал высушенный порошок из децеллюляризированного матрикса свиного мочевого пузыря, содержащий коллаген и факторы роста, для устранения травматических дефектов тканей. Биосовместимый материал стимулировал стволовые клетки взрослых, благодаря чему удалось восстановить пациентам отрезанную пропеллером авиамоделифалангу пальца , мышцу , практически утраченную в ходе военных действий, и другие поврежденные ткани.

Пожалуй, наибольшего на данный момент успеха в экспериментах на людях добился уже упомянутый Атала. Его коллектив еще в 2000-х годах использовал 3D-принтер для создания матрикса мочевого пузыря.

Полученные каркасы заселили клетками, забранными при биопсии, и вырастили полноценные органы, которые затем успешно пересадили пациентам.

В 2014 году Ясуо Куримото (Yasuo Kurimoto) из Медицинского центра Кобе пересадил женщине с возрастной макулярной дегенерациейсетчатку глаза. Ее вырастили сотрудники института RIKEN во главе с Масаё Такахаси (Masayo Takahashi) из индуцированных плюрипотентных стволовых клеток (за разработку технологии их получения соотечественник ученых Синъя Яманака в 2012 году получил Нобелевскую премию). Путем долгих экспериментов лаборатории RIKEN удалось направить дифференцировку этих клеток в пигментный эпителий сетчатки и получить плоский прямоугольник ткани размером 1,3 на 3,0 миллиметра, пригодный для трансплантации. Операция прошла без осложнений; кровотечения, отторжения и общего ухудшения самочувствия у 70-летней пациентки не наблюдалось. Однако о том, наступило ли восстановление зрения, сообщений не было.

На сегодняшний день этими работами клинические испытания органов, полученных методом тканевой инженерии, практически исчерпываются. Негусто, но известия из лабораторий позволяют в ближайшее время ожидать гораздо более впечатляющих результатов. О них мы расскажем в одном из следующих материалов.

Типы тканей

Эпителиальная ткань

Эпителиальная (покровная) ткань , или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией ).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Соединительная ткань

<<<назад

Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

<<<назад

Костная ткань , образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

<<<назад

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

<<<назад

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани – теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

<<<назад

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Нервная ткань

<<<назад

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны . Аксоны образуют нервные волокна.

Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Теперь всю полученную информацию мы можем объединить в таблицу.
<<<назад

Типы тканей

Группа тканей Виды тканей Строение ткани Местонахождение Функции
Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество – неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами – сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
Мышечная Поперечно–полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца.Имеет свойства возбудимости и сократимости
Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
Короткие отростки нейронов – древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
Нервные волокна – аксоны (нейриты) – длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) – к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)

Органы – это части организма, выполняющие определённые функции. Они имеют определенную форму и место расположение.

Строение.

Обычно орган состоит из нескольких видов тканей, но какая – то из них может преобладать: главная ткань желез – эпителиальная, а мускула – мышечная. Так, например, в печени, легких, почках, железах основной, «рабочей» тканью является эпителиальная, в кости – соединительная, в мозге – нервная. Орган имеет свою, только ему свойственную форму и положение в организме. В зависимости от выполняемых функций разным бывает и строение органа.

Органы анатомически и функционально объединяются в системы органов , т. е. в группы органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих одну общую функцию.

Функция

В организме человека выделяют следующие системы органов: пищеварительную, покровную, дыхательную, мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную . Некоторые органы объединяются по функциональному принципу в аппараты . В аппаратах органы имеют различное строение и происхождение, но их объединяет участие в выполнении общей функции, например, опорно – двигательный, эндокринный аппарат.

В покровную систему входят кожа и слизистые оболочки, выстилающие полость рта, дыхательных путей, органов пищеварения. Покровная система предохраняет организм от высыхания, температурных колебаний, повреждения, проникновения в организм ядовитых в-в и болезнетворных микроорганизмов.

Система опоры и движения включает в себя кости и мышцы. Кости, объединенные в скелет, создают опору для всех частей тела. Кости защищают внутренние органы и совместно с мышцами обеспечивают подвижность тела.

Выделительная система обеспечивает удаление из организма жидких продуктов обмена.

Дыхательная система состоит из целого ряда полостей и трубок и обеспечивает обмен газов между кровью и внешней средой.

Пищеварительная система включает в себя органы, обеспечивающие переваривание пищи и всасывание в кровь питательных в-в.

Функция половой системы – размножение. В её органах формируются половые клетки, а в женских половых органах, кроме того, происходит развитие плода.

Эндокринная система включает в себя целый ряд желёз внутренней секреции, вырабатывающих и выделяющих в кровь биологически активные в-ва (горомоны), участвующие в регуляции функций всех клеток и тканей организма.

Кровеносная система состоит из сердца и сосудов, а циркулирующая в них кровь обеспечивает обмен в-в.

Нервная система объединяет все вышеперечисленные системы, регулирует и согласовывает их деятельность, а посредством рецепторов (органов чувств) осуществляет связь организма с окружающей средой. Психическая деятельность формируется нервной системой. Благодаря деятельности нервной и эндокринной систем организм функционирует как единое целое.

Орган или система органов вне организма функционировать не может, а организм не может функционировать без любой из своих систем.

Это интересно!

Создание искусственных органов и тканей

М.В.Плетников
перевод с английского Science, 1995,
Vol. 270, N 5234, pp. 230-232.

Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления – создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации.

Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе.

В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень – сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью.

Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, – нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.

Каждая клетка организма выполняет определенную работу и поэтому нуждается в постоянном притоке кислорода и питательных веществ, а также в непрерывном удалении продуктов обмена. Кислород и питательные вещества могут проникать сквозь мембрану клетки только тогда, когда они находятся в растворенном состоянии. Каждую клетку омывает жидкость, которая содержит все необходимое для ее жизнедеятельности. Это – тканевая жидкость . Из него клетки получают O 2 и питательные вещества, а в него отдают углекислый газ и отработанные продукты обмена.

Бесцветная прозрачная тканевая жидкость заполняет в организме промежутки между клетками. Она образуется из жидкой части крови – плазмы, проникающей в межклеточные щели через стенки кровеносных сосудов, и из продуктов обмена, постоянно поступающих из клеток. Ее объем у взрослого человека составляет приблизительно 20 л.

Кровеносные капилляры не подходят к каждой клетке, поэтому питательные вещества и кислород из капилляров по законам диффузии вначале поступают в тканевую жидкость, а из нее поглощаются клетками. Следовательно, через тканевую жидкость осуществляется связь между капиллярами и клетками. Диоксид углерода, вода и другие продукты обмена, образующиеся в клетках, также за счет разности концентраций выделяются из клеток сначала в тканевую жидкость, а потом поступают в капилляры. Кровь из артериальной становится венозной и доставляет продукты распада к почкам, легким, коже, через которые они удаляются из организма.

Питательные вещества поступают в организм через органы пищеварения, а продукты распада выводятся из него через органы выделения. Связь между этими органами и клетками тела осуществляется через внутреннюю среду организма, которая состоит из крови, тканевой жидкости и лимфы.

1–клетки крови, 2–капилляр, 3–клетки тканей, 4–тканевая жидкость,
5–начало лимфатических капилляров

Кислород и питательные вещества поступают в межклеточное вещество из крови, циркулирующей по замкнутой системе кровеносных сосудов. Мельчайшие кровеносные сосуды – капилляры пронизывают все ткани организма. Через стенки капилляров в межклеточное вещ – во постоянно поступают содержащиеся в крови различные химические соединения и вода и поглощаются продукты обмена, выделяемые клетками.

В межклетниках слепо начинаются лимфатические капилляры, в них поступает тканевая жидкость, которая в лимфатических сосудах становится лимфой. Цвет лимфы желтовато–соломенный. Она на 95% состоит из воды, содержит белки, минеральные соли, жиры, глюкозу, а также лимфоциты (разновидность лейкоцитов). Состав лимфы напоминает состав плазмы , но белков здесь меньше, и в разных участках тела – она имеет свои особенности. Например, в области кишечника в ней много жировых капель, что придает ей беловатый цвет.

- 87.07 Кб

Карагандинский Государственный Медицинский Университет

Кафедра медицинской биофизики и информатики

Тема: Искусственные органы.

Выполнила: Кан Лилия 142 ОМ

Проверил: Коршуков И.В.

Караганда 2012

  1. Введение.
  2. Искусственные легкие (оксигенаторы).
  3. Искусственная почка (гемодиализ).
  4. Искусственное сердце.
  5. Кардиостимуляторы.
  6. Биологические протезы. Искусственные суставы.
  7. Заключение.

Введение.

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Ученые по всему миру все чаще задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые выполняют функции оперируемых органов, позволяют на время приостановить их работу.

Искусственные легкие (оксигенаторы).

Оксигенатором называют газообменное одноразовое устройство, которое предназначается для удаления из крови углекислоты и насыщения ее кислородом. Оксигенатор используют при проведении кардиохирургических операций, или же с целью улучшить в организме больного кровообращение, если больной страдает от заболеваний легких или сердца, содержание кислорода в крови при которых сильно понижается.

Недостатками прямоточных пузырьковых оксигенаторов являются сильный поток кислорода и связанный с этим гемолиз, а также вспенивание и последующий переход в жидкое состояние всего объема крови, проходящего через оксигенатор. Кислород, поступающий в кровь из нижней части пузырькового оксигенатора противоточного типа, создает пенный столб (экран), навстречу которому из верхней части оксигенатора стекает венозная кровь. Этот принцип более экономичен и эффективен. Расход кислорода и количество крови существенно меньше, чем в прямоточных оксигенаторах. Из-за вспенивания небольшой части притекающей венозной крови меньше травмируются форменные элементы крови. Недостатком указанных оксигенаторов является сложность управления, обусловленная необходимостью постоянного наличия пенного столба. Оксигенаторами указанного типа снабжены различные модификации отечественных АИК.

Пленочные оксигенаторы.

Как свидетельствует название этих устройств, оксигенация происходит при контакте пленки крови, образовавшейся на какой-либо твердой поверхности, с кислородом. Различают стационарные и ротационные пленочные оксигенаторы. В стационарных оксигенаторах кровь стекает по неподвижным экранам, которые находятся в атмосфере кислорода. Примером служит оксигенатор Гиббона, с помощью которого была проведена первая успешная операция на сердце с искусственным кровообращением.Главными недостатками экранных оксигенаторов являются их дороговизна, плохая управляемость, громоздкость конструкции и необходимость большого количества донорской крови. Более эффективны ротационные оксигенаторы. К ним относятся популярные в прошлом дисковый оксигенатор Кея - Кросса и цилиндровый оксигенатор Крафорда - Сеннинга. Пленка крови, образующаяся на поверхности вращающихся дисков или цилиндров, контактирует с кислородом, подаваемым в оксигенатор. Производительность ротационных оксигенаторов в отличие от экранных может быть увеличена за счет повышения скорости вращения дисков (цилиндров). Рассмотренные пленочные и пузырьковые оксигенаторы многоразового пользования имеют исторический интерес. На смену им пришли оксигенаторы одноразового пользования в комплекте с теплообменником, артериальным и венозным резервуарами, специальной «антифомной» (силикон) секцией внутри оксигенатора, газовыми и жидкостными фильтрами, набором канюль и катетеров. Наибольшей популярностью пользуются оксигенаторы фирм «Bentley» (США), «Harvey» (США), «Shiley» (США), «Polystan» (Дания), «Gambro» (Швеция) и др. Эти оксигенаторы полностью удовлетворяют запросы современной кардиохирургии и кардиоанестезиологии. Но если необходима длительная (более 4 ч) искусственная оксигенация крови, то вредное действие прямого контакта крови с кислородом и углекислым газом становится небезразличным для организма. Антифизиологичность этого феномена проявляется изменением электрокинетических сил, нарушением нормальной конфигурации молекул белков и их денатурацией, агрегацией тромбоцитов, выбросом кининов и т.д. Во избежание этого при длительных перфузиях более целесообразно пользоваться мембранными оксигенаторами.

Искусственная почка (гемодиализ).

Почки - жизненно важный орган, без которого человек не может жить.
Резкое нарушение функций почек у человека в короткое время может привести к смерти. Потому что организм больного теряет способность очищаться естественным путем. Токсины и прочие вредные вещества не удаляются, а накапливаются в организме, что грозит общим отравлением, в организме происходят необратимые изменения и спасти больного уже нельзя.

Гемодиализ - это механическое очищение крови от отходов, солей и жидкостей, необходимое пациентам, почки которых недостаточно здоровы для выполнения этой работы.

Гемодиализ проводят с помощью аппарата искусственной почки. В основе его работы лежат принципы диализа, позволяющего удалить из плазмы крови вещества с небольшой молекулярной массой (электролиты, мочевину, креатинин, мочевую кислоту и др.), и частично ультрафильтрации, с помощью которой выводятся избыток воды и токсические вещества с более высокой молекулярной массой.

Среди многих моделей аппаратов искусственной почки выделяют два основных типа: аппараты с целлофановой мембраной, имеющей форму трубки диаметром 25-35 мм, и аппараты с пластинчатой целлофановой мембраной.

Наиболее широко за рубежом применяют двухкатушечную искусственную почку Колффа-Уочингера. Преимуществом этой модели является то, что катушки с намотанными целлофановыми шлангами поступают с завода в стерильном состоянии и при надобности могут быть немедленно использованы. Простота установки и обращения, значительная диализирующая поверхность создали большую популярность этой модели. Недостатки аппарата - большая емкость по крови и значительное сопротивление току крови из-за тугой обмотки двух диализирующих шлангов.Поэтому на входе в диализатор устанавливается насос.

Советская модель искусственной почки относится к типу диализаторов с пластинчатой целлофановой мембраной.
Большой клинический опыт советских и зарубежных клиницистов показывает высокую эффективность гемодиализа в лечении больных почечной недостаточностью.

Присоединяют аппарат к больному вено-венозным или артериовенозным способом. При необходимости многократного применения Г. пациенту имплантируют наружный артериовенозный шунт или накладывают подкожное соустье между артерией и веной. С помощью монитора осуществляют контроль и регуляцию химического состава, рН, давления и температуры диализирующего раствора, скорости его прохождения, давления крови в аппарате и др. Длительность гемодиализа 5-6 ч.

Схема советской модели искусственной почки:

1 - катетер; 2 - насос по крови; 3 - диализатор; 4 - измеритель производительности; 5 - воздухоуловитель; 6 - фильтр; 7 - катетер возврата крови больному; 8 - нагреватель; 9 - насос по диализирующей жидкости; 10 - бак для диализирующего раствора; 11 - ротаметр по кислороду; 12 - ротаметр по углекислоте; 13 - гидропривод перфузионного насоса.

Кровь от больного поступает по катетеру (1) при помощи насоса (2) в диализатор (3). Проходя между целлофановыми пластинками последнего (по каждой из его 11 секций), кровь больного через целлофановую пластинку соприкасается с протекающим навстречу диализирующим раствором. Состав его обычно стандартный и содержит все основные ионы крови (К·, Na·, Са··, Mg·, Cl·, НСO 3) и глюкозу в концентрациях, необходимых для коррекции электролитного состава крови больного. После диализатора кровь поступает в измеритель производительности (4), где улавливаются сгустки крови и воздух. Дальше кровь по катетеру возвращается в венозную систему больного. Диализирующий раствор при помощи автоматического нагревателя (8) доводят до t° 38° и насыщают карбогеном с таким расчетом, чтобы рН его составляла 7,4. При помощи насоса (9) диализирующий раствор подается в диализатор. Скорость кровотока в диализаторе обычно равна 250-300 мл/мин.

Применение искусственной почки по строгим показаниям с выполнением всех мер предосторожности и при тщательном наблюдении за больным во время диализа и после него практически безопасно и не грозит какими-либо осложнениями.

Искусственное сердце.

Искусственное сердце - технологическое устройство, предназначенное для поддержания достаточных для жизнедеятельности параметров гемодинамики.

На данный момент под искусственным сердцем понимается две группы технических устройств.

  • К первой относятся гемооксигенаторы, по-другому аппараты искусственного кровообращения. Они состоят из артериального насоса, перекачивающего кровь, и блока оксигенатора, который насыщает кровь кислородом. Данное оборудование активно используется в кардиохирургии, при проведении операций на сердце.
  • Ко второй относятся кардиопротезы, технические устройства, имплантируемые в организм человека, призванные заменить сердечную мышцу и повысить качество жизни больного. В настоящее время данные устройства являются лишь экспериментальными и проходят клинические испытания.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» это «Новакор». С ней можно целый год ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Кардиостимуляторы.

Кардиостимулятор - медицинский прибор, предназначенный для воздействия на ритм сердца. Основной задачей кардиостимулятора (водителя ритма) является поддержание или навязывание частоты сердечных сокращений пациенту, у которого сердце бьётся недостаточно часто, или имеется электрофизиологическое разобщение между предсердиями и желудочками (атриовентрикулярная блокада).

Показания к применению:

  • Аритмия сердца
  • Синдром слабости синусового узла
  • Атриовентрикулярная блокада

Кардиостимулятор представляет собой прибор в герметичном металлическом корпусе небольшого размера. В корпусе располагается батарея и микропроцессорный блок. Все современные стимуляторы воспринимают собственную электрическую активность (ритм) сердца, и если возникает пауза, либо иное нарушение ритма/проводимости в течение определенного времени, прибор начинает генерировать импульсы для стимуляции миокарда. В противном случае - при наличии адекватного собственного ритма - кардиостимулятор импульсы не генерирует. Эта функция называется «по требованию» или «on demand».

Описание работы

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.