Хром - суточная норма, польза и вред. Хром и его соединения

ОПРЕДЕЛЕНИЕ

Хром - светло-серый твердый металл (рис. 1), имеющий объемно-центрированную кубическую структуру.

Парамагнитен, хорошо проводит электрический ток, отличается высокой твердостью, царапает стекло.

Рис. 1. Хром. Внешний вид.

На механические свойства титана сильно влияет наличие примесей. Чистый хром пластичный, а содержащий даже небольшую долю примесей азота и кислорода - хрупкий и ломкий. Хром технической чистоты легко раскалывается и истирается в порошок.

Основные константы хрома приведены в таблице ниже.

Таблица 1. Физические свойства и плотность хрома.

Распространенность хрома в природе

Краткая характеристика химических свойств и плотность хрома

При умеренных температурах хром устойчив на воздухе: хромированные изделия не тускнеют, так как тонкая и прозрачная пленка оксида надежно защищает их от окисления.

Хром легко растворяется в соляной кислоте (без доступа воздуха) с образование сине-голубых растворов солей хрома (II):

Cr + 2HCl = CrCl 2 + H 2 .

С кислотами-окислителями - концентрированной серной и азотной - при комнатной температуре хром не взаимодействует. Не растворяется он и в царской водке. Интересно, что очень чистый хром не реагирует даже с разбавленной серной кислотой, хотя причина этого до сих пор не установлена. При выдерживании в концентрированной азотной кислоте хром пассивируется, т.е. утрачивает способность взаимодействовать с разбавленными кислотами.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Оксид хрома (VI) массой 2 г растворили в воде массой 500 г. Рассчитайте массовую долю хромовой кислоты H 2 CrO 4 в полученном растворе.
Решение Запишем уравнение реакции получения хромовой кислоты из оксида хрома (VI):

CrO 3 + H 2 O = H 2 CrO 4 .

Найдем массу раствора:

m solution = m(CrO 3) + m (H 2 O) = 2 + 500 = 502 г.

n (CrO 3) = m (CrO 3) / M (CrO 3);

n (CrO 3) = 2 / 100 = 0,02 моль.

Согласно уравнению реакции n(CrO 3) :n(H 2 CrO 4) = 1:1, значит,

n(CrO 3) = n(H 2 CrO 4) = 0,02 моль.

Тогда масса хромовой кислоты будет равна (молярная масса - 118 г/моль):

m (H 2 CrO 4) = n (H 2 CrO 4) × M (H 2 CrO 4);

m (H 2 CrO 4) = 0,02 × 118 = 2,36 г.

Массовая доля хромовой кислоты в растворе составляет:

ω = m solute / m solution × 100%;

ω (H 2 CrO 4)=m solute (H 2 CrO 4)/ m solution × 100%;

ω (H 2 CrO 4)= 2,36 / 502 × 100% = 0,47 %.

Ответ Массовая доля хромовой кислоты равна 0,47 %.

Хром (Cr), химический элемент VI группы периодической системы Менделеева. Относится к переходным металлом с атомным номером 24 и атомной массой 51,996. В переводе с греческого, название металла означает «цвет». Такому названию металл обязан разнообразной цветовой гамме, которая присуща его различным соединениям.

Физические характеристики хрома

Металл обладает достаточной твердостью и хрупкостью одновременно. По шкале Мооса твердость хрома оценивается в 5,5. Этот показатель означает, что хром имеет максимальную твердость из всех известных на сегодня металлов, после урана, иридия, вольфрама и бериллия. Для простого вещества хрома характерен голубовато-белый окрас.

Металл не относится к редким элементам. Его концентрация в земной коре достигает 0,02% масс. долей. В чистом виде хром не встречается никогда. Он содержится в минералах и рудах, которые являются главным источником добычи металла. Хромит (хромистый железняк, FeO*Cr 2 O 3) считается основным соединением хрома. Еще одним достаточно распространенным, однако менее важным минералом, является крокоит PbCrO 4 .

Металл легко поддается плавке при температуре 1907 0 С (2180 0 К или 3465 0 F). При температуре в 2672 0 С - закипает. Атомная масса металла составляет 51,996 г/моль.

Хром является уникальным металлом благодаря своим магнитным свойствам. В условиях комнатной температуры ему присуще антиферромагнитное упорядочение, в то время, как другие металлы обладают им в условиях исключительно пониженных температур. Однако, если хром нагреть выше 37 0 С, физические свойства хрома изменяются. Так, существенно меняется электросопротивление и коэффициент линейного расширения, модуль упругости достигает минимального значения, а внутреннее трение значительно увеличивается. Такое явление связано с прохождением точки Нееля, при которой антиферромагнитные свойства материала способны изменяться на парамагнитные. Это означает, что первый уровень пройден, и вещество резко увеличилось в объеме.

Строение хрома представляет собой объемно-центрированную решетку, благодаря которой металл характеризуется температурой хрупко-вязкого периода. Однако, в случае с данным металлом, огромное значение имеет степень чистоты, поэтому, величина находится в пределах -50 0 С - +350 0 С. Как показывает практика, раскристаллизированный металл не имеет никакой пластичности, но мягкий отжиг и формовка делают его ковким.

Химические свойства хрома

Атом имеет следующую внешнюю конфигурацию: 3d 5 4s 1 . Как правило, в соединениях хром имеет следующие степени окисления: +2, +3, +6, среди которых наибольшую устойчивость проявляет Сr 3+ .Кроме этого существуют и другие соединения, в которых хром проявляет совершенно иную степень окисления, а именно: +1, +4, +5.

Металл не отличается особой химической активностью. Во время нахождения хрома в обычных условиях, металл проявляет устойчивость к влаге и кислороду. Однако, данная характеристика не относится к соединению хрома и фтора - CrF 3 , которое при воздействии температур, превышающих 600 0 С, взаимодействует с парами воды, образуя в результате реакции Сr 2 О 3 , а также азотом, углеродом и серой.

Во время нагревания металлического хрома, он взаимодействует с галогенами, серой, кремнием, бором, углеродом, а также некоторыми другими элементами, в результате чего получаются следующие химические реакции хрома:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Хроматы можно получить, если нагреть хром с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов:

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

Хром не обладает токсичностью, чего нельзя сказать о некоторых его соединениях. Как известно, пыль данного металла, при попадании в организм, может раздражать легкие, через кожу она не усваивается. Но, поскольку в чистом виде он не встречается, то его попадание в человеческий организм является невозможным.

Трехвалентный хром попадает в окружающую среду во время добычи и переработки хромовой руды. В человеческий организм попадание хрома вероятно в виде пищевой добавки, используемой в программах по похудению. Хром с валентностью, равной +3, является активным участником синтеза глюкозы. Ученые установили, что излишнее употребление хрома особого вреда человеческому организму не наносит, поскольку не происходит его всасывание, однако, он способен накапливаться в организме.

Соединения, в котором участвует шестивалентный металл, являются крайне токсичными. Вероятность их попадания в человеческий организм появляется во время производства хроматов, хромирования предметов, во время проведения некоторых сварочных работ. Попадание такого хрома в организм чревато серьезными последствиями, так как соединения, в которых присутствует шестивалентный элемент, представляют собой сильные окислители. Поэтому, могут вызвать кровотечение в желудке и кишечнике, иногда с прободением кишечника. При попадании таких соединений на кожу возникают сильные химические реакции в виде ожогов, воспалений, возникновения язв.

В зависимости от качества хрома, которое необходимо получить на выходе, существует несколько способов производства металла: электролизом концентрированных водных растворов оксида хрома, электролизом сульфатов, а также восстановлением оксидом кремния. Однако, последний способ не очень популярен, так как при нем на выходе получается хром с огромным количеством примесей. Кроме того, он также является экономически невыгодным.

Характерные степени окисления хрома
Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2 (желтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
Cr2O3 (зелёный) Cr(OH)3 (серо-зеленый) Амфотерный

Cr3+ (зеленые или лиловые соли)
- (зелёный)

+4 CrO2 не существует Несолеобразующий -

Встречается редко, малохарактерна

+6 CrO3 (красный)

H2CrO4
H2Cr2O7

Кислотный

CrO42- (хроматы, желтые)
Cr2O72- (дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности.

За счет того, что обладает превосходными антикоррозийными свойствами. Хромирование защищает любой другой сплав от ржавчины. Кроме того, легирование сталей хромом придает им такую же стойкость к коррозии, которая свойственна и самому металлу.

Итак, давайте обсудим сегодня, каковы технические и окислительные характеристики материала хром, основные амфотерные, восстановительные свойства и получение металла также будут затронуты. А еще мы узнаем, каково влияние хрома на свойства стали.

Хром – металл 4 периода 6 группы побочной подгруппы. Атомный номер 24, атомная масса – 51, 996. Это твердый металл серебристо-голубоватого цвета. В чистом виде отличается ковкостью и вязкостью, но малейшие примеси азота или углерода придают ему хрупкость и твердость.

Хром часто относят к черным металлам за счет цвета его основного минерала – хромистого железняка. А вот свое название – от греческого «цвет», «краска», он получил благодаря своим соединениям: соли и оксиды металла с разной степенью окисления окрашены во все цвета радуги.

  • В нормальных условиях хром инертен и не взаимодействует с кислородом, азотом или водой.
  • На воздухе он сразу же пассивируется – покрывается тонкой оксидной пленкой, которая полностью перекрывает кислороду доступ к металлу. По той же причине вещество не взаимодействует с серной и азотной кислотой.
  • При нагревании металл становится активным и вступает в реакции с водой, кислородом, кислотами и щелочами.

Для него характерна объемно-центрированная кубическая решетка. Фазовые переходы отсутствуют. При температуре в 1830 С возможен переход к гранецентрированной решетке.

Однако у хрома есть одна интересная аномалия. При температуре в 37 С некоторые физические свойства металла резко меняются: изменяется электросопротивление, коэффициент линейного расширения, падает до минимума модуль упругости и повышается внутреннее трение. Связано это с прохождением точки Нееля: при этой температуре вещество меняет свои антиферромагнитные свойства на парамагнитные, что представляет собой переход первого уровня и означает резкое увеличение объема.

Химические свойства хрома и его соединений описаны в этом видео:

Химические и физические свойства хрома

Температура плавления и кипения

Физические характеристики металла зависят от примесей до такой степени, что сложным оказалось установить даже температуру плавления.

  • Согласно современным измерениям температура плавления считается величина в 1907 С. Металл относится к тугоплавким веществам.
  • Температура кипения равна 2671 С.

Ниже будет дана общая характеристика физических и магнитных свойств металла хром.

Общие свойства и характеристики хрома

Физические особенности

Хром относится к наиболее устойчивым из всех тугоплавких металлов.

  • Плотность в нормальных условиях составляет 7200 кг/куб. м, это меньше чем у .
  • Твердость по шкале Мооса составляет 5, по шкале Бринелля 7–9 Мн/м 2 . Хром является самым твердым металлом из известных, уступает только урану, иридию, вольфраму и бериллию.
  • Модуль упругости при 20 С составляет 294 ГПа. Это довольно умеренный показатель.

Благодаря строению – объемно-центрированная решетка, хром обладает такой характеристикой, как температура хрупко-вязкого периода. Вот только когда речь идет об этом металле, эта величина оказывается сильно зависящей от степени чистоты и колеблется от -50 до +350 С. На практике раскристаллизированный хром никакой пластичностью не обладает, но после мягкого отжига и формовки становится ковким.

Прочность металла также растет при холодной обработке. Легирующие добавки тоже заметно усиливают это качество.

Теплофизические характеристики

Как правило, тугоплавкие металлы имеют высокий уровень теплопроводности и, соответственно, низкий коэффициент теплового расширения. Однако хром заметно отличается по своим качествам.

В точке Нееля коэффициент теплового расширения совершает резкий скачок, а затем с увеличением температуры продолжает заметно расти. При 29 С (до скачка) величина коэффициента составляет 6.2 · 10-6 м/(м K).

Теплопроводность подчиняется этой же закономерности: в точке Нееля она падает, хотя и не столь резко и уменьшается с возрастанием температуры.

  • В нормальных условиях теплопроводность вещества равна 93.7 Вт/(м K).
  • Удельная теплоемкость в тех же условиях – 0.45 Дж/(г K).

Электрические свойства

Несмотря на нетипичное «поведение» теплопроводности хром является одним из лучших проводников тока, уступая по этому параметру только серебру, и золоту.

  • При нормальной температуре электропроводность металла составит 7.9 · 106 1/(Ом м).
  • Удельное электрическое сопротивление – 0.127 (Ом мм2)/м.

До точки Нееля – 38 С, вещество является антиферромагнетиком, то есть, под действием магнитного поля и при его отсутствии никаких магнитных свойств не проявляется. Выше 38 С хром становится парамагнетиком: проявляет магнитные свойства под действием внешнего магнитного поля.

Токсичность

В природе хром встречается только в связанном виде, поэтому попадание чистого хрома в организм человека исключено. Однако известно, что металлическая пыль раздражает ткани легких, через кожу не усваивается. Сам металл не токсичен, но о его соединениях этого сказать нельзя.

  • Трехвалентный хром оказывается в окружающей среде при и ее переработке. Однако в организм человека может попасть и в составе пищевой добавки – пиколината хрома, используемой в программах по уменьшению веса. Как микроэлемент трехвалентный металл участвует в синтезе глюкозы и необходим. Избыток его, судя по исследованиям, определенной опасности не представляет, поскольку не всасывается стенками кишечника. Однако в организме он может накапливаться.
  • Соединения шестивалентного хрома токсичны более чем в 100–1000 раз. Попасть в организм он может при производстве хроматов, при хромировании предметов, при некоторых сварочных работах. Соединения шестивалентного элемента являются сильными окислителями. Попадая в ЖКТ, они вызывают кровотечение желудка и кишечника, возможно с прободением кишечника. Через кожу вещества почти не всасываются, но оказывают сильное разъедающее действие – возможны ожоги, воспаления, появление язв.

Хром – обязательный легирующий элемент при получении нержавеющих и жаропрочных . Его способность противостоять коррозии и передавать это качество сплавам остается самым востребованным качеством металла.

Химические свойства соединений хрома и его окислительно-восстановительные свойства рассмотрены в этом видео:

Химические свойства соединений хрома.

Cr 2+ . Концентрация заряда двухвалентного катиона хрома соответствует концентрации заряда катиона магния и двухвалентного катиона железа, поэтому целый ряд свойств, особенно, кислотно-основное поведение этих катионов близко. При этом, как уже было сказано, Cr 2+ - сильный восстановитель, поэтому в растворе идут следующие реакции: 2CrCl 2 + 2HCl = 2CrCl 3 + H 2 4CrCl 2 + 4HCl + O 2 = 4CrCl 3 + 2H 2 O. Достаточно медленно, но происходит даже окисление водой: 2CrSO 4 + 2H 2 O = 2Cr(OH)SO 4 + H 2 . Окисление двухвалентного хрома происходит даже легче, чем окисление двухвалентного железа, соли также подвергаются гидролизу по катиону в умеренной степени (т.е., доминирующей является первая ступень).

CrO – основной оксид, черного цвета, пирофорен. При 700 о С диспропорционирует: 3CrO = Cr 2 O 3 + Cr. Он может быть получен при термическом разложении соответствующего гидроксида в отсутствие кислорода.

Cr(OH) 2 – нерастворимое основание желтого цвета. Реагирует с кислотами, при этом кислоты-окислители одновременно с кислотно-основным взаимодействием окисляют двухвалентный хром, в определенных условиях это происходит и с кислотами-неокислителями (окислитель – H +). При получении по обменной реакции гидроксид хрома (II) быстро зеленеет из-за окисления:

4Cr(OH) 2 + O 2 = 4CrO(OH) + 2H 2 O.

Окислением сопровождается и разложение гидроксида хрома (II) в присутствии кислорода: 4Cr(OH) 2 = 2Cr 2 O 3 + 4H 2 O.

Cr 3+ . Соединения хрома (III) по химическим свойствам похожи на соединения алюминия и железа (III). Оксид и гидроксид амфотерны. Соли слабых нестойких и нерастворимых кислот(H 2 CO 3 , H 2 SO 3 , H 2 S, H 2 SiO 3) подвергаются необратимому гидролизу:

2CrCl 3 + 3K 2 S + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S + 6KCl ; Cr 2 S 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S.

Но катион хрома (III) – не очень сильный окислитель, поэтому сульфид хрома (III) существует и может быть получен в безводных условиях, правда, не из простых веществ, так как разлагается при нагревании, а по реакции: 2CrCl 3 (кр) + 2H 2 S (газ) = Сr 2 S 3 (кр) + 6HCl. Окислительных свойств трёхвалентного хрома недостаточно для того, чтобы растворы его солей взаимодействовали с медью, но с цинком такая реакция проходит: 2CrCl 3 + Zn = 2CrCl 2 + ZnCl 2.

Cr 2 O 3 – амфотерный оксид зеленого цвета, имеет очень прочную кристаллическую решетку, поэтому химическую активность проявляет только в аморфном состоянии. Реагирует, в основном, при сплавлении с кислотными и основными оксидами, с кислотами и щелочами, а также с соединениями, имеющими кислотные или основные функции:

Cr 2 O 3 + 3K 2 S 2 O 7 = Cr 2 (SO 4) 3 + 3K 2 SO 4 ; Cr 2 O 3 + K 2 CO 3 = 2KCrO 2 + CO 2 .

Cr(OH) 3 (CrO(OH), Cr 2 O 3 *nH­­ 2 O) – амфотерный гидроксид серо-синего цвета. Растворяется и в кислотах, и в щелочах. При растворении в щелочах образуются гидроксокомлексы, в которых катион хрома имеет координационное число 4 или 6:

Cr(OH) 3 + NaOH = Na; Cr(OH) 3 + 3NaOH = Na 3 .

Гидроксокомплексы легко разлагаются кислотами, при этом с сильными и слабыми кислотами процессы различны:

Na + 4HCl = NaCl +CrCl 3 + 4H 2 O ; Na + CO 2 = Cr(OH) 3 ↓ + NaHCO 3.

Соединения Cr(III) являются не только окислителями, но и восстановителями по отношению к превращению в соединения Cr(VI). Особенно легко реакция проходит в щелочной среде:

2Na 3 + 3Cl 2 + 4NaOH = 2Na 2 CrO 4 + 6NaCl + 8H 2 O E 0 =­ - 0,72­ В.

В кислой среде: 2Cr 3+ → Cr 2 O 7 2- E 0 =­ +1,38 В.

Cr +6 . Все соединения Cr(VI) – сильные окислители. Кислотно-основное поведение этих соединений похоже на поведение соединений серы в той же степени окисления. Такое сходство свойств соединений элементов главных и побочных подгрупп в максимальной положительной степени окисления характерно для большинства групп периодической системы.

CrO 3 - соединение тёмно-красного цвета, типичный кислотный оксид. При температуре плавления разлагается: 4CrO 3 = 2Cr 2 O 3 + 3O 2 .

Пример окислительного действия: CrO 3 + NH 3 = Cr 2 O 3 + N 2 + H 2 O (При нагревании).

Оксид хрома(VI) легко растворяется в воде, присоединяя её и превращаясь в гидроксид:

H 2 CrO 4 - хромовая кислота, является сильной двухосновной кислотой. В свободном виде не выделяется, т.к. при концентрации выше 75% идет реакция конденсации с образованием двухромовой кислоты: 2H 2 CrO 4 (жёлт.) = H 2 Cr 2 O 7 (оранж.) + H 2 O.

Дальнейшее концентрирование ведёт к образованию трихромовой (H 2 Cr 3 O 10) и даже тетрахромовой (H 2 Cr 4 O 13) кислот.

Димеризация хромат-аниона происходит также при подкислении. В результате соли хромовой кислоты при pH > 6 существуют как хроматы(K 2 CrO 4) жёлтого цвета, а при pH < 6 как бихроматы(K 2 Cr 2 O 7) оранжевого цвета. Большинство бихроматов растворимы, а растворимость хроматов чётко соответствует растворимости сульфатов соответствующих металлов. В растворах возможно взаимопревращения соответствующих солей:

2K 2 CrO 4 + H 2 SO 4 = K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O; K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O.

Взаимодействие бихромата калия с концентрированной серной кислотой ведёт к образованию хромового ангидрида, нерастворимого в ней:

K 2 Cr 2 O 7 (крист.) + + H 2 SO 4 (конц.) = 2CrO 3 ↓ + K 2 SO 4 + H 2 O;

Бихромат аммония при нагревании претерпевает внутримолекулярную окислительно-восстановительную реакцию: (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

ГАЛОГЕНЫ («рождающие соли»)

Галогенами называются элементы главной подгруппы VII группы периодической системы. Это фтор, хлор, бром, иод, астат. Строение внешнего электронного слоя их атомов: ns 2 np 5 . Т.о., на внешнем электронном уровне находится 7 электронов, и до устойчивой оболочки благородного газа им не хватает всего одного электрона. Являясь предпоследними элементами в периоде, галогены имеют наименьший в периоде радиус. Все это приводит к тому, что галогены проявляют свойства неметаллов, имеют большую электроотрицательность и высокий потенциал ионизации. Галогены являются сильными окислителями, они способны принимать электрон, превращаясь в анион с зарядом "1-" или проявлять степень окисления «-1» при ковалентном связывании с менее электроотрицательными элементами. В то же время, при движении по группе сверху вниз радиус атома увеличивается и окислительная способность галогенов уменьшается. Если фтор является самым сильным окислителем, то иод при взаимодействии с некоторыми сложными веществами, а также с кислородом и другими галогенами проявляет восстановительные свойства.

Атом фтора отличается от других членов группы. Во-первых, он проявляет только отрицательную степень окисления, так как является самым электроотрицательным элементом, а во-вторых, как любой элемент II периода, он имеет только 4 атомных орбитали на внешнем электронном уровне, три из которых заняты неподеленными электронными парами, на четвертой находится неспаренный электрон, который в большинстве случаев и является единственным валентным электроном. В атомах остальных элементов на внешнем уровне имеется незаполненный d-электронный подуровень, куда может переходить возбужденный электрон. Каждая неподеленная пара при распаривании дает два электрона, поэтому основные степени окисления хлора, брома и иода, кроме «-1», это «+1», «+3», «+5», «+7». Менее устойчивыми, но принципиально достижимыми являются степени окисления «+2», «+4» и «+6».



Как простые вещества все галогены представляют собой двухатомные молекулы с одинарной связью между атомами. Энергии диссоциации связей в ряду молекул F 2 , Cl 2 , Br 2 , J 2 следующие: 151 кДж/моль, 239 кДж/моль, 192 кДж/моль, 149 кДж/моль. Монотонное уменьшение энергии связи при переходе от хлора к иоду легко объясняется увеличением длины связи из-за роста радиуса атома. Аномально низкая энергия связи в молекуле фтора имеет два объяснения. Первое касается самой молекулы фтора. Как уже говорилось, фтор имеет очень маленький радиус атома и целых семь электронов на внешнем уровне, поэтому при сближении атомов при образовании молекулы возникает межэлектронное отталкивание, в результате чего перекрывание орбиталей происходит не полностью, и порядок связи в молекуле фтора несколько меньше единицы. Согласно второму объяснению, в молекулах остальных галогенов существует дополнительное донорно-акцепторное перекрывание неподеленной электронной пары одного атома и свободной d-орбитали другого атома, по два таких противоположных взаимодействия на молекулу. Т.о., связь в молекулах хлора, брома и иода определяется как почти тройная с точки зрения наличия взаимодействий. Но донорно-акцепторные перекрывания происходят лишь частично, и связь имеет порядок (для молекулы хлора) 1,12.

Физические свойства: При обычных условиях фтор – это трудно сжижаемый газ (температура кипения которого -187 0 С) светло-желтого цвета, хлор – легко сжижаемый (температура кипения равна –34,2 0 С) газ желто-зеленого цвета, бром – бурая легко испаряющаяся жидкость, иод – твердое вещество серого цвета с металлическим блеском. В твердом состоянии все галогены образуют молекулярную кристаллическую решетку, характеризующуюся слабыми межмолекулярными взаимодействиями. В связи с чем иод имеет склонность к возгонке – при нагревании при атмосферном давлении переходит в газообразное состояние (образует фиолетовые пары), минуя жидкое. При движении по группе сверху вниз температуры плавления и кипения увеличиваются как за счет увеличения молекулярной массы веществ, так и за счет усиления сил Ван-дер-Ваальса, действующих между молекулами. Величина этих сил тем больше, чем больше поляризуемость молекулы, которая, в свою очередь, возрастает с увеличением радиуса атома.

Все галогены плохо растворяются в воде, но хорошо – в неполярных органических растворителях, например, в четыреххлористом углероде. Плохая растворимость в воде связана с тем, что при образовании полости для растворения молекулы галогена вода теряет достаточно прочные водородные связи, взамен которых между ее полярной молекулой и неполярной молекулой галогена никаких сильных взаимодействий не возникает. Растворение галогенов в неполярных растворителях соответствует ситуации: «подобное растворяется в подобном», когда характер рвущихся и образующихся связей одинаковый.