Электризация. Электрическое взаимодействие. Что такое электризация тел и как она происходит

Электризация тел

т. е. возникновение в них электрического состояния происходит при чрезвычайно разнообразных процессах, совершаемых с этими телами. Почти всякое механическое действие, производимое с твердым телом, как, напр., трение об это тело или надавливание на него другого тела, скобление, раскалывание, сопровождается развитием электричества. Так же точно электризуются тела при многих химических действиях; некоторые вещества электризуются при отвердевании; некоторые соли весьма сильно электризуются при своем выкристаллизовании из растворов. Является электричество и в жидкостях при трении этих жидкостей о твердые тела и даже при трении их о некоторые другие жидкости. Наконец, даже простое соприкосновение двух каких-либо разнородных тел, все равно, будут ли эти тела твердые или жидкие, вызывает в обоих этих телах электрическое состояние. Во всех приведенных случаях причиной Э. тел является одно и то же, а именно прикосновение, контакт разнородных тел. Первый Александр Вольта своими опытами, произведенными в самые последние годы XVIII в., доказал, что при прикосновении друг с другом двух каких-либо проводящих электричество тел, но непременно отличающихся одно от другого по химическому составу, происходит Э. обоих этих тел, причем одно из них заряжается положительным электричеством, другое - отрицательным. Количества двух этих противоположных электричеств, являющихся на соприкасающихся телах, равны между собой. Вольта нашел, что металлы и другие твердые проводники, не подвергающиеся, как скажем теперь, электролизу, т. е. не разлагающиеся на химически составные части при прохождении через них электрического тока (проводники первого класса), по своей способности электризоваться при контакте могут быть расположены в известной последовательности (ряд Вольты) - так, что всякое тело при прикосновении с любым из тел, стоящих в этом ряду дальше, электризуется положительно и при прикосновении с любым из тел, ему предшествующих, электризуется отрицательно. Вольта дал следующий ряд тел:

Цинк, свинец, олово, железо, медь, серебро, золото, уголь, графит, окись марганца.

Впоследствии, при исследовании более чистых химически металлов, их расположение оказалось несколько иным, и в настоящее время мы можем расположить металлы в такой ряд:

Алюминий, цинк, олово, кадмий, свинец, сурьма, висмут, нейзильбер, латунь, ртуть, железо, сталь, медь, серебро, золото, угли, уран, теллур, платина, палладий.

Химически сложные жидкости и вообще проводники, разлагающиеся от действия тока (проводники второго рода), не могут быть помещены в ряд Вольты вместе с проводниками первого класса; они и отдельно от последних не составляют подобного ряда.

Если заменить выражение электрическое напряжение, употребленное Вольтой для характеристики электрического состояния, являющегося в теле, выражением потенциал, то можно следующим образом формулировать количественный закон, который был найден Вольтой и затем подтвержден многочисленными исследованиями последующих ученых. При соприкосновении двух разнородных проводящих тел на них являются различные потенциалы, неодинаковые при различных условиях, но тем не менее такие, что разность между этими потенциалами получается всегда одна и та же, если только вещества и температура двух испытуемых тел остаются без изменения. Эта разность потенциалов не зависит от формы и размеров тел, а от величины поверхности соприкосновения и от электрического состояния, в котором находятся тела. Она определяется лишь природой тел и, как было найдено позже, температурой их. Разность потенциалов, являющихся на двух каких-либо соприкасающихся друг с другом проводниках первого класса, равна сумме разностей потенциалов, возникающих при соприкосновении попарно (при той же температуре и при той же окружающей их газовой среде) всех проводников, стоящих в ряду Вольты между двумя взятыми. Из этого следует, что в цепи, составленной из произвольного числа различных металлов, имеющей повсюду одну и ту же температуру и оба конечных звена из одного и того же вещества, разность потенциалов на концах равна нулю, или, что то же, в замкнутой цепи, образованной из какого угодно числа разнородных проводников первого класса, если только все части цепи имеют одну и ту же температуру, не может существовать ток без какой-либо внешней причины (индукции). Проводники второго класса, вообще не имеющие места в ряду Вольты, не обладают и этой количественной зависимостью между разностями потенциалов при прикосновении друг с другом. Вследствие этого в цепи, состоящей из проводников первого класса и хотя бы одного проводника второго класса, на конечных звеньях, приготовленных из одного и того же вещества, получается разность потенциалов, равная сумме разностей потенциалов, соответствующих всем парам соприкасающихся разнородных частей цепи. Такую цепь и представляют собой так наз. гальванические элементы. Благодаря существованию разности потенциалов на конечных звеньях подобных цепей на полюсах элементов или полюсах батареи, составленной из последних, и возникает электрический ток, когда эти полюсы соединяются друг с другом каким-либо проводником (когда замыкается цепь). Разность потенциалов, являющаяся на полюсах элемента или батареи, когда эти полюсы не соединены друг с другом проводником, т. е. когда элемент или батарея не замкнуты, и представляет собой то, что носит название электродвижущей силы этого элемента или этой батареи. Дальнейшие исследования обнаружили, что Э. при контакте, т. е. так называемое явление Вольты, получается не только тогда, когда приводятся в прикосновение друг с другом два тела, отличающиеся одно от другого химически, но и тогда, когда эти тела только физически неоднородны. Достаточно различия в плотностях или в температурах, чтобы при соприкосновении тел получилось явление Вольты. Явление Вольты получается и при контакте разнородных непроводников, равным образом и при контакте проводника и непроводника, а также и при контакте металлов с газами. Впрочем, до сих пор существует иное воззрение на причину Э. По мнению некоторых, Э. при соприкосновении двух разнородных тел получается только тогда, когда между соприкасающимися веществами происходит химическое соединение или существует в них стремление к такому химическому действию. Если два тела не могут образовать химического соединения и тем не менее электризуются при соприкосновении, то явление это объясняют влиянием окружающей среды, влиянием кислорода воздуха, когда опыт, как это обыкновенно бывает, производится в воздухе. Говорят, что в этом случае неодинаковое химическое действие окружающей среды на то и другое из соприкасающихся тел обусловливает возникновение разности потенциалов на этих телах. По этой теории теплота, развивающаяся при химическом соединении эквивалентов двух тел, и определяет величину разности потенциалов, возникающую при соприкосновении этих тел. Хотя до настоящего времени мы не имеем ни одного вполне строгого опытного доказательства правильности идеи Вольты, что одно соприкосновение двух разнородных тел является причиной Э. этих тел, но, с другой стороны, мы не имеем также и ни одного вполне безупречного доказательства неверности этой идеи. Приводимые против мнения Вольты факты могут быть истолкованы в пользу последнего. Наконец, имеются и некоторые косвенные указания справедливости объяснения Вольты. Развивающаяся в настоящее время электронная теория (см.) в вопросе об Э. при контакте стоит на стороне учения Вольты. Было упомянуто, что наблюдается Э. и при контакте двух разнородных изоляторов. Весьма интересные опыты Хоорвега показали, что изоляторы не подчиняются ряду Вольты. Такой результат находится в соответствии с другими свойствами изоляторов. Ни один из изоляторов не представляет собой абсолютного непроводника электричества. Все изоляторы хотя слабо, но все-таки проводят ток и в этом отношении уподобляются проводникам второго класса, а следовательно, и не могут поместиться в ряду Вольты.

Возникновение Э. при трении двух разнородных тел, причем и в этом случае разнородность может быть не по существу, не химическая, а лишь физическая, обязано контакту этих тел. При трении происходит лишь непрерывное изменение места прикосновения, вследствие чего и развивается большое количество электричества. Исследуя Э., получающуюся в различных металлах при трении их о смесь серы и гуттаперчи, Гоген нашел возможным расположить металлы в ряд, причем ряд этот получился схожим с рядом Вольты. По мнению проф. П. А. Гезехуса ("Журн. Русск. физ.-хим. общ.", 1901, т. XXXIII, стр. 89), "некоторые несовпадения и несоответствия в рядах соприкосновения (ряд Вольты) и трения (ряд Гогена) несущественны; они обусловливаются, главным образом, изменениями температуры при трении". Заметим, что гладкое стекло при трении о кожу, покрытую амальгамой (амальгама Киенмайера представляет собой сплав ртути, цинка и олова), электризуется всегда положительно; смола, а также роговой каучук при трении о мех или шерсть электризуются отрицательно. В следующем перечне тела распределены в таком порядке, что на каждом развивается электричество положительное при натирании его одним из последующих тел и отрицательное - при трении одним из предшествующих: мех, полированное стекло, шерстяные ткани, перья, дерево, бумага, шелк, шеллак, смола, матовое стекло.

Очевидно, что при надавливании одного тела на другое, отличное от первого, при скоблении, раскалывании, при химических реакциях, при кристаллизации, при отвердевании, наконец, при быстром обращении жидкости в пар, когда образующиеся пары, увлекающие с собой капельки жидкости, а также и твердые частички, находящиеся в жидкости, прикасаются к стенкам сосуда, в котором находится жидкость, во всех этих случаях мы имеем контакт разнородных веществ, а следовательно, имеем причину возбуждения электрического состояния в этих телах. Весьма тщательно произведенные опыты показали, что само по себе испарение или даже кипение какой-либо жидкости, если только в последнем случае удалена возможность трения увлекаемых парами капелек жидкости о твердые предметы, не сопровождается Э.

Интересные явления Э. наблюдаются в телах кристаллических. Еще в начале XVIII стол. было известно, что кристалл турмалина при нагревании или охлаждении является наэлектризованным на поверхности, причем на двух его концах наблюдается разноименное электричество. На том и другом конце турмалина знак электричества меняется в противоположный, как только вместо нагревания начинается охлаждение кристалла. В настоящее время мы знаем, что подобная Э. при изменении температуры кристалла наблюдается во всяком кристалле, имеющем оси, не тождественные одна другой, причем при повышении температуры получается Э., противоположная той, какая возникает при понижении температуры. В кристаллах, в которых обнаруживается гемиморфизм, являются при изменении температуры на обоих концах гемиморфной оси взаимно противоположные электричества. В кристаллах с одинаковым развитием обоих концов каждой оси, т. е. не показывающих гемиморфизма, наблюдается одинаковая полярность на обоих концах одной оси, места же с различными по знаку электричествами соответствуют в этих кристаллах концам различных осей. Возбуждение электричества прекращается, как только кристалл всею своею массой принимает одну и ту же температуру. Электричество, явившееся на поверхности кристалла при изменении его температуры, может вследствие дурной проводимости кристалла сохраняться на нем продолжительное время. Улучшение проводимости кристалла с увеличением температуры его дает возможность получить при нагревании этого кристалла электрический ток в проводнике, соединяющем две части поверхности кристалла. Все подобные явления носят название явлений пироэлектричества. Термин "пироэлектричество" был введен в науку Брюстером (см. Пьезо- и Пироэлектричество). Замечено, что в некоторых кристаллах наблюдается развитие электричества не только при непосредственном нагревании или охлаждении их, но и при простом освещении лучами света, в особенности лучами большой преломляемости (цветные плавиковые шпаты). Это явление было исследовано Ганкелем и им было названо явлением фотоэлектричества. К этой же области явлений относят обыкновенно возникновение разности потенциалов на двух чистых металлических пластинках или же на пластинках, покрытых хлористыми или йодистыми соединениями их металлов, находящихся в воде или в каком-либо растворе кислоты или соли, когда одна из этих пластинок подвергается освещению лучами большой преломляемости.

В довольно близкой связи с явлениями пироэлектричества находится другая категория явлений в кристаллах, а именно явления пьезоэлектричества, т. е. возбуждение в кристаллах электричества сжатием. И в пьезоэлектрических явлениях на распределение электричества по поверхности кристалла оказывает главное влияние строение кристалла (см. Пьезо- и пироэлектричество). По всей вероятности, как пьезоэлектрические, так и пироэлектрические явления происходят от одной и той же причины. Как при сдавливании кристаллов являются натяжение и внутреннее давление в слоях их, так подобное же натяжение и давление вызываются и изменением температуры кристаллов. Вследствие возникновения упругих натяжений и к тому же неодинаковых по разным направлениям, так как кристаллы суть тела анизотропные, получается разнородность в отдельных прилегающих друг к другу слоях кристаллов, что и является причиной возбуждения электрического состояния. Иная, по-видимому, причина Э. встречается в явлениях термоэлектричества, открытых в 1822 г. Зеебеком. Зеебек нашел, что если к двум концам какого-либо металлического стержня, проволоки или полоски припаять по проволоке какого-нибудь другого металла, то при нагревании одного из спаев или охлаждении другого, одним словом, при сообщении разности температур этим спаям обе конечные проволоки, а также и другие соединенные с ними тела являются противоположно наэлектризованными. При изменении нагреваемого спая меняется и знак Э. на той и другой проволоке. На самом деле причина термоэлектричества заключается опять-таки в возникновении явления Вольты. Но в этом случае явление Вольты получается не только в самом месте соприкосновения двух разнородных металлов, но и в слоях обоих металлов на некотором расстоянии от нагреваемого или охлаждаемого места соприкосновения их. В самом деле от места соприкосновения двух металлов, нагреваемого или охлаждаемого, температура распределяется в обоих телах или убывая в обе стороны, или возрастая в обе стороны. Таким образом, следующие друг за другом слои одного и того же металла получаются отличающимися один от другого по температуре, т. е. являются неоднородными, а следовательно, в месте соприкосновения этих слоев должно возбудиться явление Вольты. Итак, Э. концов цепи, составленной из разнородных тел, при существовании различия в температурах в местах соприкосновения этих тел, т. е. Э. вследствие явления термоэлектричества, представляет собой результат возникновения явления Вольты как в местах соприкосновения различных частей этой цепи, так и в самих этих частях. Явления термоэлектричества относятся, таким образом, к той же группе явлений, к которой принадлежат явления Э. при соприкосновении, трении, химическом действии и т. д.

Вполне отличными от всех приведенных случаев Э. представляются: 1) явления возбуждения электрического состояния в проводящих телах действием индукции в электрическом и магнитных полях и 2) явление возбуждения электрического состояния проводящего тела, металла, при освещении этого тела лучами большой преломляемости, точнее - лучами ультрафиолетовыми. Опыты показывают, что в любом проводящем теле, когда оно изолировано, являются одновременно два электричества, и положительное, и отрицательное, как только это тело вносится в электрическое поле, т. е. помещается в некотором расстоянии от другого наэлектризованного тела и отделяется от последнего непроводящей средой. Это явление Э. носит название электростатической индукции. Если данное проводящее тело не изолировано, на нем вследствие индукции получается всегда электричество, противоположное по знаку тому электричеству, которое находится на другом наэлектризованном, индуктирующем теле. Фарадей нашел, что подобное же возбуждение двух противоположных электричеств в проводящем теле получается и тогда, когда это тело находится в магнитном поле, причем напряжение этого поля в точках пространства, занимаемого телом, подвергается непрерывному изменению или само тело находится в определенном движении в этом поле. Существенная разница между этими двумя случаями индукции заключается именно в том, что в электрическом поле при полном постоянстве его напряжения и неизменности положения проводящего тела возникает и поддерживается постоянным электрическое состояние этого тела; напротив, в поле магнитном возбуждается Э. только или при изменении напряжения поля в месте, занимаемом телом, или при движении тела, соединенном с перерезыванием им магнитных силовых линий. Согласно опытам Фарадея, вполне подтвердившимся исследованиями последующих экспериментаторов, являющаяся вследствие индукции магнитного поля разность потенциалов e на концах какого-нибудь проводника, выражается числом магнитных силовых линий, перерезываемых этим проводником в единицу времени, т. е. e выражается формулой e = dn/dt. Эта разность потенциалов, или, как она называется обыкновенно, электродвижущая сила индукции, не зависит от вещества проводника. Возбуждение электрического состояния в металле, а именно появление на нем положительного электричества, когда этот металл подвергается освещению ультрафиолетовыми лучами, наблюдается лучше всего при чрезвычайно сильном разрежении газа, в котором находится металл. Причина этому - возникновение на поверхности металла при действии на него ультрафиолетовых лучей катодных лучей, т. е. выбрасывание при этих условиях поверхностью металла отрицательных электронов. Вообще, как впервые показал это на опыте Гальвакс, ультрафиолетовые лучи, падая на отрицательно наэлектризованный металл, вызывают исчезновение с этого металла электричества, т. е. возбуждают рассеяние отрицательного электричества в воздухе. На заряд положительный ультрафиолетовые лучи не влияют. Это явление, названное актиноэлектрическим, послужило предметом исследований А. Г. Столетова, Риги, Эльстера, Гейтеля, Томсона и др. Из опытов, произведенных в последние годы, главным образом при участии лорда Кельвина (В. Томсона), оказалось, что на двух разнородных металлах, отделенных друг от друга воздухом, возникает разность потенциалов, когда сквозь этот воздух проходят лучи Рентгена. Эта разность потенциалов одинакова с той, какая получается на этих металлах при непосредственном прикосновении их друг к другу.

И. Боргман.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Электризация тел" в других словарях:

    Статическое электричество явление, при котором на поверхности и в объёме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд. Статическое электричество совокупность явлений, связанных с… … Википедия

    1. Характерные свойства луча света. 2. Свет не есть движение упругого твердого тела механики. 3. Электромагнитные явления как механические процессы в эфире. 4. Первая Максвеллова теория света и электричества. 5. Вторая Максвеллова теория. 6.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Статическое электричество совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках … Википедия

Тела, способные подобно янтарю после натирания притягивать мелкие предметы, называют наэлектризованными. Это означает, что на телах в таком состоянии имеются электрические заряды , а сами тела называются заряженными. Заметим, что трение в процессе электризации не играет принципиальной роли. Электрические заряды возникают при тесном соприкосновении различных веществ. В случае твердых тел трение позволяет увеличить площадь взаимного контакта и таким образом увеличивает возможность их электризации. Два наэлектризованных тела могут либо отталкиваться, либо притягиваться друг к другу. Способность к такому взаимодействию связана с наличием на них электрических зарядов двух видов. Ответить на вопрос: «Что такое электрический заряд?» – нельзя, но можно утверждать точно, что наличие на теле электрического заряда приводит к способности электромагнитного взаимодействия его с другими телами, которые также владеют таким свойством.

Если зарядить два легких тела, подвешенных на шелковых нитях, прикасаясь к ним стеклянной палочкой, потертой о шелк, то они отталкиваются. То же самое наблюдается, если их зарядить от эбонитовой палочки, потертой о мех. Но если одно из тел зарядить от стеклянной палочки, а другое от эбонитовой, то они будут притягиваться. Когда наэлектризованные тела отталкиваются друг от друга, то говорят, что заряды на них одного рода, когда притягиваются, то заряды разного рода. Заряды разных родов принято называть положительными и отрицательными. Положительным принято считать заряд, который приобретает стекло при натирании его о шелк. Шелк при этом приобретает отрицательный заряд.

Важным явлением, которое позволяет понять процесс электризации тел, является следующее, если два тела, заряженные разноименными зарядами, привести в соприкосновение, то после этого сила взаимодействия между ними или исчезнет совсем, или уменьшится и изменит направление на противоположное. Заряды различных знаков компенсируют друг друга. Явление исчезновения с тела электрического заряда называют нейтрализацией. Этот факт говорит о том, что любое нейтральное тело содержит в одинаковом количестве положительные и отрицательные заряды. Они не возникают при натирании двух тел, а перераспределяются между телами таким образом, что на первом теле (стекле)образуется излишек положительных зарядов, а на втором теле (шелк) – излишек отрицательных. Электрический заряд заряженного тела можно передать на незаряженное тело, при этом предыдущий заряд тела будет изменяться.

Каким может быть наименьший заряд? Эксперименты показывают, что ни у одной из заряженных частиц не встречается заряд меньше заряда протона или электрона. Этот элементарный заряд равен –1,60 10 –19 Кл у электрона и +1,60 10 –19 Кл у протона. Заряд электрона обозначается символом е , а протона – р . Масса протона, однако в 1836 раз больше массы электрона. Известно также, что электроны и протоны входят в состав каждого атома. Поскольку протоны находятся в ядрах атомов, основную роль при электризации тел играют электроны. Так называемые валентные электроны, наиболее слабо связанные с ядром, а часть вообще может находиться за пределами атома. При близком контакте двух нейтральных тел часть электронов может переходить с одного тела на другое. Если на теле образовывается излишек электронов, то оно владеет отрицательным зарядом. Из приведенных рассуждений следует вывод: заряды не создаются и не пропадают, они могут быть переданы от одного тела другому или перемещены внутри одного тела. Это положение носит название закона сохранения электрического заряда и является основным в учении об электричестве. Оно никак не доказывается, а лишь подтверждается многочисленными фактами и экспериментами. Иногда его формулируют по-иному: в изолированной (замкнутой) системе алгебраическая сумма зарядов остается постоянной.

Поскольку всякий заряд q образуется совокупностью элементарных зарядов, он является целым кратным е :

q =|n × e |

где n – количество лишних элементарных зарядов. Равенство показывает, что электрический заряд – величина дискретная, однако элементарный заряд настолько мал, что возможную величину макроскопических зарядов можно считать изменяющейся непрерывно.

Обычно под словом «заряд» понимают частицу или тело, которые обладают способностью к электромагнитному взаимодействию.

Заряженное тело, размеры которого в данной конкретной задаче можно не учитывать, называют точечным. На практике в большинстве случаев заряженными бывают макроскопические тела.

Для измерения величины заряда на теле существует измерительный прибор – электрометр . При его соприкосновении с металлическим стержнем электрометра часть заряда переходит на посаженную на ось, проводящую стрелку и она отклоняется. По углу отклонения определяется величина заряда.

Электростатика - раздел физики, изучающий неподвижные заряды и не изменяющиеся во времени электрические поля.

Электрические явления известны человеку с давних времен. Это электризация тел при трении, молния. Систематическое изучение электрических явлений начато в XVIII в. В России этим занимались М. В. Ломоносов и Г. Рихман, в Америке - Б. Франклин. М. В. Ломоносов установил природу молнии, Б. Франклин - два рода электричества. Франклин предложил считать, что стекло, натертое кожей, заряжается положительно, а янтарь, натертый шерстью, - отрицательно. С точки зрения современной науки, отрицательно заряженное тело содержит избыток электронов. Если у тела забрать часть электронов, то оно заряжается положительно. Следовательно, отрицательный знак заряда электрона - условное понятие, связанное с произвольным выбором Б. Франклина.

Любому телу можно сообщить электрический заряд, т. е. наэлектризовать его. Для этого его нужно привести в контакт с источником зарядов. С древних времен человеку было известно, что кусок янтаря (затвердевшей смолы хвойных деревьев), натертый шерстью, притягивает к себе мелкие кусочки сухих листьев дерева, соринки. Позже было обнаружено, что аналогичной способностью обладает и стекло, натертое кожей. Эти явления были названы электрическими (от лат. «электрон» - янтарь). Такие тела могут служить источниками зарядов.

В наше время, в век господства синтетических материалов, мы повседневно сталкиваемся с проявлением статического электричества : трение одежды из синтетики о кожу человека сопровождается треском искр, видимых в темноте.

Чтобы обнаружить заряд какого-либо тела, нужно воспользоваться пробным зарядом - другим заряженным телом малых размеров (точечным зарядом). На пробный заряд со стороны нашего тела будет действовать сила. Если источник пробного заряда и тела один и тот же (янтарь или стекло), это будет отталкивающая сила, если же их источники разные (у одного янтарь, а у другого стекло), то пробный заряд будет притягиваться к нему.

Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными , а явление приобретения телами электрического заряда называют — электризация .

В этой статье попробуем изложить довольно обобщенное представление о том, что же такое электризация тел, а также коснемся закона сохранения электрического заряда.

Независимо от того, принципу работает тот или иной источник электрической энергии, в каждом из них происходит процесс электризации физических тел , т. е. разделение электрических зарядов, имеющихся в источнике электрической энергии, и сосредоточение их на определенных местах, например на электродах или зажимах источника. В результате этого процесса на одном на зажимов источника электрической энергии (катоде) получается избыток отрицательных зарядов (электронов), а на другом зажиме (аноде) - недостаток электронов, т. е. первый из них заряжается отрицательным, а второй - положительным электричеством.

После открытия электрона, элементарной частицы, обладающей минимальным зарядом, после того, как было наконец объяснено строение атома, большинство физических явлений, связанных с электричеством, также стали объяснимы.

Вещественная материя, образующая тела, в целом оказывалась электрически нейтральной, ибо составляющие тела молекулы и атомы нейтральны в обычных условиях, и тела в итоге зарядом не обладают. Но если такое нейтральное тело потереть о другое тело, то часть электронов покинет свои атомы, и перейдет с одного тела на другое. Длина путей, пройденных этими электронами при таком перемещении, не более расстояния между соседними атомами.

Однако если после трения тела разъединить, раздвинуть, то оба тела окажутся заряженными. Тело, на которое перешли электроны, станет отрицательно заряженным, а то, которое эти электроны отдало - приобретет положительный заряд, станет положительно заряженным. Это и есть электризация.

Допустим что в каком-нибудь физическом теле, например в стекле, удалось изъять из значительного числа атомов часть их электронов. Это значит, что стекло, потеряв часть своих электронов, окажется заряженным положительным электричеством, так как в нем положительные заряды получили перевес над отрицательными.

Изъятые из стекла электроны исчезнуть не могут и должны быть где-то размешены. Допустим, что после того как электроны били изъяты из стекла, они оказались размещенными на металлическом шарике. Тогда очевидно, что металлический шарик, получивший лишние электроны, зарядился отрицательным электричеством, так как в нем отрицательные заряды получили перевес над положительными.

Наэлектризовать физическое тело - значит создать в нем избыток или недостаток электронов, т.е. нарушить в нем равновесие двух противоположностей, а именно положительных и отрицательных зарядов.

Наэликтризовать два физических тела одновременно и совместно разноменными электрическими зарядами - значит изьять из одного тела электроны и передать их другому телу.

Если где-либо в природе образовался положительный электрический заряд, то оновременно с ним неизбежно должен возникнуть такой же по абсолютной величине отрицательный заряд, так как всякий избыток электронов в любом физическом теле возникает за счет недостатка их в каком-нибудь другом физическом теле.

Разноименные электрические заряды выступают в электрических явлениях как неизменно сопутствующие друг другу противоположности, единство и взаимодействие которых сотавляет внутреннее содержание электрических явлений в веществах.

Нейтральные тела электризуются тогда, когда они отдают или принимают электроны, в любом случае они приобретают электрический заряд, и перестают быть нейтральными. Здесь не возникают ниоткуда электрические заряды, заряды только разделяются, поскольку электроны уже были в телах, и просто поменяли свое местоположение, электроны переместились с одного электризуемого тела на другое электризуемое тело.

Знак электрического заряда, получающегося при трении тел зависит от природы этих тел, от состояния их поверхностей и от ряда других причин. Поэтому не исключена возможность, что одно и то же физическое тело может в одном случае зарядиться положительным, a в другом - отрицательным электричеством, например, металлы при трении их о стекло и шерсть электризуются отрицательно, а при трении о каучук - положительно.

Уместным будет вопрос: почему через диэлектрики электрический заряд не проходит, а через металлы проходит? Все дело в том, что в диэлектриках все электроны связаны с ядрами своих атомов, они просто не имеют возможности к свободному перемещению по объему всего тела.

А вот в металлах ситуация иная. Связи электронов в атомах металлов гораздо слабее, чем в диэлектриках, и некоторые электроны легко покидают свои атомы, и свободно перемещаются по объему всего тела, это так называемые свободные электроны, которые и обеспечивают перенос заряда в проводниках.

Разделение зарядов происходит, тем не менее, и при трении металлических тел, и при трении диэлектриков. Но в демонстрациях используют именно диэлектрики: эбонит, янтарь, стекло. К этому прибегают по той простой причине, что поскольку в диэлектриках заряды по объему не перемещаются, то они и остаются на тех же местах на поверхностях тел, где и возникли.

А если трением, скажем, о мех, наэлектризовать кусок металла, то заряд лишь успев переместиться к его поверхности, мгновенно стечет на тело экспериментатора, и демонстрации, такой как с диэлектриками, не получится. Но если кусок металла будет иметь изоляцию от рук экспериментатора, то он на металле останется.

Если заряд тел в процессе электризации лишь разделяется, то как ведет себя общий их заряд? Несложные эксперименты дают ответ на этот вопрос. Взяв электрометр с укрепленным на его стержне металлическим диском, кладут на диск кусок шерстяной ткани, размером с этот диск. Сверху на диск из ткани кладут еще один такой же проводящий диск, как на стержне электрометра, но оснащенный диэлектрической рукояткой.

Держась за рукоятку, экспериментатор несколько раз двигает верхний диск, трет его об упомянутый тканевый диск, лежащий на диске стержня электрометра, затем убирает его в сторону от электрометра. Стрелка электрометра отклоняется в момент, когда диск убирают, и остается в таком положении. Это свидетельствует о том, что на шерстяной ткани и на диске, закрепленном на стержне электрометра, появился электрический заряд.

После этого диск с рукояткой приводят в соприкосновение со вторым электрометром, но без закрепленного на нем диска, и наблюдают, что его стрелка отклоняется почти на такой же угол, что и стрелка первого электрометра.

Эксперимент показывает, что оба диска при электризации получили равные по модулю заряды. Но каковы знаки этих зарядов? Чтобы ответить на данный вопрос, электрометры соединяют проводником. Стрелки электрометров тут же вернутся к нулевому положению каждая, в котором и были до начала эксперимента. Заряд нейтрализовался, а значит заряды дисков были равны по модулю, но противоположны по знаку, и в сумме дали ноль, как до начала эксперимента.

Подобные эксперименты указывают на то, что при электризации сохраняется суммарный заряд тел, то есть если в сумме был ноль до электризации, то в сумме будет ноль и после электризации . Но почему так получается? Если натереть о сукно эбонитовую палку, она зарядится отрицательно, а сукно положительно, и это известный факт. На эбоните, при трении о шерсть образуется избыток электронов, а на сукне, соответственно, недостаток.

Заряды будут равны по модулю, ведь сколько электронов перешло с сукна на эбонит, столько отрицательного заряда получил эбонит, и столько же положительного заряда образовалось на сукне, так как ушедшие с сукна электроны - это положительный заряд сукна. И избыток электронов на эбоните в точности равен недостатку электронов на сукне. Заряды противоположны по знаку, но равны по модулю. Очевидно, полный заряд при электризации сохраняется, он в сумме равен нулю.

Мало того, даже если до электризации заряды обоих тел отличались от нуля, то в сумме полный заряд все равно сохраняется тем же, что и был до электризации. Обозначив заряды тел до их взаимодействия как q1 и q2, а заряды после взаимодействия как q1" и q2", то справедливым будет следующее равенство:

q1 + q2 = q1" + q2"

Это говорит о том, что при любых взаимодействиях тел полный заряд неизменно сохраняется. Это один из фундаментальных законов природы, закон сохранения электрического заряда. Бенджамин Франклин открыл его в 1750 году, и ввел понятия «положительный заряд» и «отрицательный заряд». Франклин и предложил обозначать разноименные заряды знаками «-» и «+».

В электронике для токов прямо следуют из закона сохранения электрического заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из этой системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Справедливости ради отметим, что наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда на практике не наблюдались.

Другие способы электризации физических тел:

1. Если цинковую пластину погрузить в раствор серной кислоты H 2 SO 4 , то она частично в нем растворится. Часть атомов цинковой пластины, оставив по два своих электрона на цинковой пластине перейдет в раствор серией кислоты в виде двухзарядных положительных ионов цинка. В результате цинковая пластина зарядится отрицательным электричеством (избыток электронов), а раствор серной кислоты - положительным (избыток положительных ионов цинка). Это имение электризации цинка в растворе серной кислоты использовано как основной процесс возникновении электрической энергии.

2. Если на поверхности таких металлов, как цинк, цезий и некоторые другие, падают лучи света, то с этих поверхностей выделяются свободные электроны в окружающую среду. В результате металл заряжается положительным электричеством, а окружающее его пространство - отрицательным. Испускание электронов освещенными поверхностями некоторых металлов называется фотоэффектом, нашедшим себе применение в фотоэлементах.

3. Если металлическое тело нагреть до состояния белого каления, то с его поверхности будут вылетать свободные электроны в окружающее пространство. В результате этого металл, потерявший электроны зарядится положительным электричеством, а окружающая среда - отрицательным.

4. Если спаять концы двух разнородных проволок, например висмутовой и медной, и место их спая нагреть, то свободные электроны частично перейдут из медной проволоки на висмутовую. В результате медная проволока зарядится положительным электричеством, а висмутовая - отрицательным. Явление электризации двух физических тел при поглощении ими тепловой энергии .

Надеемся, что эта краткая статья дала вам общее представление о том, что такое электризация тел, и теперь вы знаете, как экспериментально проверить закон сохранения электрического заряда при помощи простого эксперимента.

Цели:

Образовательные:

  • Формирование первоначальных представлений об электрическом заряде, о взаимодействии заряженных тел, о существовании двух видов электрических зарядов.
  • Выяснение сущности процесса электризации тел.
  • Определение знака заряда наэлектризованного тела.

Развивающие:

  • Развитие навыков выделять электрические явления в природе и технике.
  • Ознакомление с краткими историческими сведениями изучения электрических зарядов.
  • Формирование научного представления о физической картине мира.

Воспитательные:

  • Показать значение опытных фактов и эксперимента в создании представления об электризации тел.
  • Воспитание любознательности.
  • Воспитание творческих способностей.

Оборудование:

Для учителя: кусочек янтаря, сосуд с водой, металлические гильзы, султанчики, эбонитовая палочка, стеклянная палочка, компьютер, медиа проектор, экран.

Для учащихся: пластмассовая расческа, гильза из фольги на подставке, стеклянная и эбонитовая палочки, кусок меха и шелка, полиэтилен, полоска бумаги.

ХОД УРОКА.

  1. Организационный момент.
  2. Актуализация знаний.
  3. Объяснение нового материала.
  4. Итог урока. Домашнее задание

Организационный момент.

Приветствие, формулировка темы и цели урока (слайд №1).

Актуализация знаний.

1.Что вы знаете о строении вещества?

2.Из чего состоят молекулы?

3.Как устроен атом?

Объяснение нового материала.

Перед вами маленький кусочек янтаря. Это смола сосны, которая пролежала много сотен тысяч лет на дне моря. Мы некогда не узнаем, кто первым обратил внимание на удивительную способность янтаря, потертого о шерсть или мех, притягивать к себе мелкие предметы. По словам древнегреческого философа Фалеса Милетского, жившего в 4 веке до нашей эры, это были ткачи (слайд №2).

Опыт с кусочком янтаря.

Янтарь по-гречески - электрон. Отсюда произошли слова электричество, электризация тел. Внешне кусочек янтаря остался таким же. Видно при трении появилась какая-то сила, способная притягивать мелкие тела.

Очень долгое время это свойство притягивать, т. е. электризоваться приписывалась только янтарю. И только в 1600 году английский врач и естествоиспытатель Уильям Гильберт врач доказал, что при трении электризуются многие другие вещества: алмаз, сапфир, сургуч и что притягивают они не только соломинки, но и металлы, дерево, листья, камешки и даже воду и масло. Тела, обнаруживающие способность натирания он назвал электрическими телами (слайд №3).

Учитель: Если кусочек янтаря потереть о шерсть или стеклянную палочку — о бумагу или шелк, то можно услышать легкий треск, в темноте искорки, а сама палочка приобретает способность притягивать к себе мелкие предметы

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщили электрический заряд

Мы свами знаем, что могут электризоваться волосы при расчесывании, одежда. Каждый испытывал электрический удар от соприкосновения с дверной ручкой или батареей центрального отопления

Фронтальный эксперимент.

Сейчас вам самим предстоит убедиться на опыте, что тела могут электризоваться. У вас на столах лежат полиэтиленовая пленка, кусочек ацетатного шелка, линейка и бумажная полоска.

  1. Натрите пленку куском ткани. Поднесите поочередно пленку и ткань к кусочкам бумаги. Что вы наблюдаете?
  2. Проделайте подобные опыты с пластмассовой ручкой или линейкой. Что вы наблюдаете?
  3. Положите на бумажную полоску полиэтиленовую пленку и потрите полоски. Разведите их. А затем приблизите их друг к другу. Взаимодействуют ли они между собой?

Учащиеся дают отчет о полученных результатах.

Ответьте на вопросы:

1.Оба ли тела электризуются при соприкосновении?

2.Как можно обнаружить электризацию тел?

Электризоваться могут многие вещества. В том числе жидкости и газы. Проводится опытс водой. Опыты по электризации очень капризны. Большое влияние оказывает влажность воздуха. Изобретение электростатической машины немецким ученым Отто фон Герике в 1660 году позволило снять эту проблему. Это был шар из плавленой серы, который приводился во вращение специальным приводом. Вращая шар и натирая его ладонями, Герике тем самым электризовал его. Наэлектризованный шар притягивал листочки золота, серебра, бумаги. С помощью этого прибора Герике обнаружил, что, кроме притяжения, существует электрическое отталкивание(слайд №4).

В настоящее время электрофорная машина выглядит такой, какая она стоит перед вами. Учитель объясняет принцип действия и показывает опыты, доказывающие, что электризация тел происходит и при касании заряженного и незаряженного тела

Вывод: электризация тел происходит посредством следующих видов соприкосновения: трения и касания.

Что же является причиной электризации тел? Что появляется у тел, ведь они внешне остались прежними?

Вывод: оба тела получили электрические заряды. .

В 1733 году французский ботаник и физик Шарль Дюффе открыл два вида зарядов - заряды, полученные в результате трения двух смолистых веществ (он их назвал «смолистым электричеством») и заряды, полученные при трении стекла и слюды («стеклянное электричество»). А американский физик и политический деятель Бенжамин Франклин в 1778 году заменил термин «стеклянное электричество» на «положительное», «смоляное» на «отрицательное». Эти термины и прижились в науке (слайд №5).

Положительный заряд обозначают знаком «+», отрицательный знаком «-»

Стекло, потертое о шелк, заряжается положительным зарядом - «+»

Эбонит, потертый о шерсть, заряжается отрицательным зарядом - «-»

На доске и в тетрадях рисуем схему:

Исследуем, как ведут себя тела, заряженные разными зарядами; одинаковыми зарядами.

Опыты с султанами.

Выводы:

1.Существуют различные заряды.

2.Заряды всегда связаны с телами или частицами.

3. Тела, имеющие заряды одного рода, взаимно отталкиваются.

4.. Тела, имеющие заряды разного рода, взаимно притягиваются.

Запишите выводы в тетрадь

Откуда взялись эти заряды?

При электризации тела теряют или получают электроны.

Закрепление изученного материала.

Исследовательская работа (слайд №6).

Выполняя работу по группам, составьте план проведения эксперимента по определению знака заряда, проговорите друг другу порядок своих действий.

Задание 1. Имея в своем распоряжении пластмассовую расческу, эбонитовую палочку, султанчик, кусочек шерсти определите знак заряда, получаемого на расческе при расчесывании волос.

Задание2. Подвешенная к штативу на шелковой нити гильза заряжена, но неизвестно каков знак ее заряда. Как, имея в своем распоряжении стеклянную палочку и кусок шелка, определить знак заряда на гильзе?

Тест. (выполняется на двойном листе, между листами вставлена копировальная бумага; верхний лист сдается, нижний остается у ученика для проверки и самооценки выполненной работы)

  1. Как взаимодействуют заряженная палочка и бумажная гильза в случае а и в случае б?
  1. Какой знак заряда имеет левый шар в случае а и в случае б?
  1. Правильно ли изображены взаимодействия заряженных тел?
  1. Висящие рядом бумажные гильзы наэлектризовали. После этого они расположились так, как показано на рисунке. Одинаковые или разные заряды получили гильзы?

Итог урока. Домашнее задание.

Подведение итогов урока:

  1. Что на уроке было важно?
  2. Что было новым?
  3. Что было интересно?

Оценки за урок.

Домашнее задание: 25, 26, по желанию подготовить презентации о грозовых явлениях и применении электризации в медицине.

Литература.

  1. Е.М. Гутник, Е,В. Рыбакова, Е.В. Шаронина. Методические материалы для учителя. Физика. 8 класс. - М.; Дрофа
  2. Л.А. Горев. Занимательные опыты по физике. - М.; Просвещение
  3. Единая коллекция цифровых образовательных ресурсов:
  4. И.И.Мокрова, «Физика. 8 класс: поурочное планы по учебнику А.В.Перышкина «Физика. 8 класс», 2 части. - Учитель -АСТ. -, 2003.
  5. Лукашик В.И, Иванова Е.В. Сборник задач по физике для 7 - 9 классов общеобразовательных учреждений, М.: Просвещение, 2004.- 224
  6. Перышкин А.В. Физика. 8 кл.:учеб. для общеобразоват. Учреждений - М.: Дрофа, 2008г.

7. Сборники тестовых и текстовых заданий для контроля знаний и умений: