Диагностика и лечение генетических заболеваний у детей. Генная Терапия – Как Работает, Что Лечит, Плюсы и Минусы Проблемы Лечение генетических заболеваний

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Записаться к Генетику

Чтобы записаться на прием к врачу или диагностику, Вам достаточно позвонить по единому номеру телефона
+7 495 488-20-52 в Москве

Или

+7 812 416-38-96 в Санкт-Петербурге

Оператор Вас выслушает и перенаправит звонок в нужную клинику, либо примет заказ на запись к необходимому Вам специалисту.

Или же можно нажать зеленую кнопку «Записаться Онлайн» и оставить свой телефон. Оператор перезвонит Вам в течение 15-ти минут и подберет Вам специалиста, соответствующего Вашему запросу.

В данный момент запись ведется к специалистам и в клиники в Москве и Санкт-Петербурге.

Кто такой генетик?

Генетик – это специалист, в чьи обязанности входит выявление, лечение и профилактика наследственных заболеваний. Также этот специалист занимается генетической предрасположенностью человека к тем или иным патологиям. Выражаясь простыми словами, этот доктор специализируется на проблемах со здоровьем, которые передаются ребенку от родителей.

Как получить профессию генетика?

Чтобы стать генетиком, в первую очередь, необходимо получить высшее образование в сфере общей медицины. После этого нужно пройти специализацию по генетике , которая проводится на кафедрах по подготовке генетиков при разных учебных заведениях. Обучение специализации длится примерно 2 года.

При прохождении специализации генетика изучаются следующие дисциплины:

  • Общая генетика человека. Эта наука изучает закономерность передачи по наследству тех или иных как нормальных, так и аномальных особенностей организма.
  • Клиническая генетика. Этот раздел медицины изучает характер (происхождение, развитие, последствия ) наследственных заболеваний.
  • Современные методы диагностики. Эта дисциплина включает изучение специфики проведения и расшифровки различных анализов, которые могут быть назначены генетиком.
  • Физиология человека. Наука, изучающая структуру и функции как отдельных органов и тканей, так и их совокупную деятельность, которая обеспечивает жизнедеятельность организма.
  • Экологическая генетика. Это раздел генетики, который изучает влияние окружающей среды на человеческий организм, возможные изменения под действием экологии и их способность передаваться по наследству.
  • Фармакогенетика. Эта дисциплина изучает влияние наследственности на реакцию организма, которая может возникнуть при приеме тех или иных лекарств.

Пациенты генетика

Основную категорию пациентов генетика составляют люди, которые по собственному желанию или показаниям врача хотят узнать вероятность наследственного заболевания у планируемого или вынашиваемого ребенка. При продолжительных неудачных попытках зачать ребенка тоже обращаются к этому специалисту, для того чтобы проверить, не является ли причиной генетическое бесплодие . Для получения достоверных данных осуществляется оценка генетического риска, которая заключается в проведении различных дородовых исследований.

Также к этому доктору обращаются те, кто уже столкнулся с проявлением какой-нибудь генетической болезни. Таким пациентам проводится диагностика (в случае если диагноз не установлен ), назначается лечение (если целесообразно ) или профилактические меры для предупреждения рецидивов (повторных обострений ) болезни.

В чем заключается работа генетика?

Работа генетика, как и любого другого врача, заключается в оказании компетентной помощи пациентам. Вначале проводится опрос, в ходе которого врач задает вопросы как о пациентах (чаще это пары, которые планируют завести ребенка или уже ждут его ), так и об их близких родственниках.

В ходе опроса генетик уточняет следующие данные:

  • наличие неудачных беременностей (выкидыши , аборты );
  • наличие тех или иных генетических патологий у мужчины и женщины, которые планируют завести или ждут ребенка;
  • сведения о заболевании родственников (как правило, затрагивается не менее 3 поколений );
  • наличие в семье старшего ребенка с теми или иными патологиями;
  • вредные факторы, с которыми приходится сталкиваться пациентам в быту или на работе (проживание вблизи крупных заводов, частое взаимодействие с химическими веществами ).
Затем проводится диагностика, методы которой выбираются в зависимости от полученных ответов. Совокупность анализов и данных опроса позволяет врачу установить вероятность развития генетической патологии и принять соответствующие меры.

Вопросы профилактики генетических заболеваний также являются важной составляющей работы генетика. Кроме диагностики, лечения и профилактики генетических заболеваний у генетика существуют и другие профессиональные обязанности.

Генетик на рабочем месте выполняет следующие действия:

  • организация реабилитации больного (при тяжелых наследственных недугах );
  • выписка необходимых документов (больничных листов, направлений к другим специалистам );
  • организация и контроль персонала, который находится в подчинении (медсестры, санитары ).
Отдельно следует упомянуть о таком направлении в работе генетика как образовательная работа с населением. Примерно 10% детей в Российской Федерации страдают каким-нибудь генетическим заболеванием. Среди них много инвалидов и социально неприспособленных детей, которым нужна постоянная помощь как родителей, так и врачей. Ответственное отношение к планированию рождения ребенка является эффективным методом уменьшения количества наследственных болезней.

В задачи генетика входит объяснить будущим родителям важность предварительного обследования перед зачатием, соблюдение врачебных предписаний и других мер предосторожности. Также врач на образовательных мероприятиях рассказывает о факторах риска и профилактике наследственных заболеваний.

С какими заболеваниями сталкивается генетик?

В своей практике генетик сталкивается с генетическими заболеваниями, которые делятся на две группы - хромосомные и генные. Хромосомные патологии – это болезни, возникающие в результате мутации хромосом у одного из родителей или у плода. Генные болезни развиваются по причине деформации определенных участков (называются гены ) макромолекулы ДНК, которая отвечает за хранение и передачу наследственной информации. Также генетик занимается такой группой патологий как многофакторные болезни.

Какие хромосомные заболевания лечит генетик?

Эта группа представлена большим количеством заболеваний, которые проявляются множественными отклонениями в физическом развитии и нередко сопровождаются умственной отсталостью .

В практике генетика наиболее распространены следующие хромосомные заболевания:

  • Синдром Дауна. Самое распространенное и хорошо изученное заболевание из этой группы. Причиной развития синдрома Дауна становится лишняя хромосома, которая формируется в момент оплодотворения яйцеклетки (то есть у ребенка с синдромом Дауна здоровые родители, но при соединении их биоматериала происходит «сбой» ). Проявляется болезнь характерной внешностью (косым разрезом глаз, широкой переносицей, полуоткрытым ртом ), слабоумием , слабой иммунной системой.
  • Синдром Патау. Также развивается по причине лишней хромосомы, которая формируется при оплодотворении. Проявляется выраженными физическими аномалиями, которые нередко приводят к смерти плода еще в материнской утробе. Появившиеся на свет дети с этим синдромом в развитых странах доживают до 1 года примерно в 15 процентах случаев.
  • Синдром Клайнфельтера. Встречается только у пациентов мужского пола и часто обнаруживается тогда, когда пара обращается к генетику по поводу бесплодия, так как эта аномалия делает мужчину стерильным. К внешним признакам синдрома Клайнфельтера можно отнести высокий рост (не менее 180 сантиметров ), у некоторых пациентов отмечаются увеличенные молочные железы . У одних больных интеллект нормальный, у других могут присутствовать малозначительные отклонения от нормы.
  • Синдром Шерешевского-Тернера. Патология проявляется исключительно физическими аномалиями - дефектами строения половых органов, низкорослостью, короткой шеей, кожными складками в области шеи. В большинстве случаев люди с этим синдромом бесплодны, но при проведении компетентного лечения возможно зачатие.

Какие генные заболевания лечит генетик?

Генные заболевания проявляются расстройством обмена какой-нибудь группы веществ (липидов , аминокислот, металлов, белков ), что ведет к дисфункции некоторых органов, отклонениям в физическом развитии. Проблемы с умственным здоровьем при генных патологиях встречаются редко.

В практике генетика могут встречаться следующие болезни:

  • Гемофилия. Причиной патологии является недостаточный синтез белков, которые отвечают за свертываемость крови. При нарушении целостности сосудов у таких больных начинается обильное кровотечение . В результате этого возникает опасность гибели пациента из-за внутреннего кровотечения или внешних потерь крови даже при небольших травмах или порезах . Гемофилией страдают мужчины, а женщины являются носителем мутированного гена.
  • Талассемия. Еще одно заболевание крови , при котором вырабатывается недостаточное количество гемоглобина . Проявляется талассемия желтушным оттенком кожи , большими размерами живота, замедленным ростом тела. Угрозы для жизни данное заболевание не представляет, но при тяжелых формах необходимо регулярно проводить переливания крови и принимать специальные препараты.
  • Ихтиоз. При этой болезни из-за неправильного белкового и жирового обмена нарушается процесс ороговения кожи, в результате чего тело пациента покрывается толстыми жесткими чешуйками. У таких больных также отмечается склонность к аллергиям , заболеваниям печени , сердца и кровеносной системы. Если первые симптомы проявляются после рождения (как правило, на 3 – 4 месяц ), при соответствующем лечении и легкой разновидности ихтиоза (их существует порядка 28 видов ), прогноз благоприятный. Если же ребенок рождается уже с проявлениями ихтиоза, то в большинстве случаев он погибает в первые дни жизни.
  • Муковисцидоз. У пациентов с этим заболеванием нарушается функциональность органов, которые продуцируют слизь (слюнные железы, легкие , половые железы ). Выделяемый секрет отличается повышенной густотой и вязкостью, из-за чего возникают проблемы с функциональностью многих органов. В европейских странах средний возраст выживаемости при муковисцидозе составляет 40 лет, в Российской Федерации – не больше 30 лет.
  • Синдром Марфана. При этой патологии нарушается выработка вещества, обеспечивающего здоровую структуру соединительной ткани, что приводит к проблемам со стороны опорно-двигательного аппарата, сердечно-сосудистой и нервной систем. Пациенты с синдромом Марфана отличаются худобой, высоким ростом при довольно коротком туловищем, непропорционально длинными и тонкими руками, ногами, пальцами. Интересно, что синдромом Марфана страдал, например, Авраам Линкольн. При адекватном лечении прогноз при этой болезни благоприятен.
Нужно сказать, что вышеперечисленные заболевания – лишь небольшая часть из всех патологий, с которыми приходится сталкиваться генетику, так как в общем специалисты насчитывают порядка 1500 разновидностей генных аномалий.

Какими многофакторными болезнями занимается генетик?

Многофакторные заболевания – это патологии, развитие которых определяет не только наследственность, но и другие факторы. Также такие заболевания называют болезнями с наследственной предрасположенностью.

Различают следующие многофакторные болезни:

  • Плоскостопие. Деформация правильной формы стопы, в результате чего человек быстрее устает при ходьбе. Плоскостопие может проявляться как с рождения, так и на любом году жизни.
  • Сахарный диабет. Сахарный диабет - это нарушение водного и углеводного обмена, что проявляется повышенным содержанием сахара в крови.
  • Язва желудка. Язва желудка - это нарушение целостности слизистой желудка , в результате чего пациенты (чаще мужчины ) испытывают боли в области живота , нарушения стула и другие проблемы с пищеварением.
  • Заячья губа. Аномалия, при которой ребенок рождается с видимой расщелиной на верхней губе. При своевременной проведенной операции (одной или нескольких ) дефект устраняется практически бесследно. На тот факт, проявится ли у ребенка данная патология, большое влияние оказывает курение беременной женщины, употребление алкоголя, наличие инфекционных заболеваний во время вынашивания ребенка.
  • Бронхиальная астма. Бронхиальная астма - это воспаление легких хронического типа, которое сопровождается приступами сильного кашля , одышки , чувством нехватки воздуха.
  • Шизофрения. Шизофрения - это расстройство психики, при котором у пациента нарушается процесс восприятия окружающего мира и мышление. Проявления болезни многозначительны и во многом зависят от пола и возраста больного.
Предрасположенность к тому или иному заболеванию предопределяется еще на момент формирования эмбриона, но проявится оно или нет – зависит от внешних обстоятельств.

На болезни с наследственной предрасположенностью оказывают влияние следующие факторы:

  • Образ жизни человека. Чем крепче физическое и психическое здоровье, тем меньше вероятность развития той или иной болезни.
  • Пол. Некоторые патологии чаще проявляются, например, у мужчин. Также пол человека может влиять на интенсивность проявления болезни.
  • Окружающая среда. Влияние неблагоприятных экологических факторов (загрязненный воздух и вода, продукты питания с нитратами ) увеличивают риск развития многих заболеваний.
Кроме вышеперечисленных факторов для каждого заболевания существуют и отдельные триггеры (обстоятельства, провоцирующие болезнь ). Так, риск заболеть сахарным диабетом увеличивается при лишнем весе, плоскостопию способствует ношение неудобной обуви, язве – прием некоторых лекарств. Поэтому для людей, у которых есть наследственная предрасположенность к тому или иному заболеванию следует соблюдать профилактику этой болезни и вести здоровый образ жизни .

Какие анализы и обследования может назначить генетик?

Среди всех анализов и обследований, которые может назначить генетик, наибольшим значением обладает пренатальная (дородовая ) диагностика. Такие исследования назначаются как парам, которые только планируют беременность , так и женщинам, уже вынашивающим ребенка. Целью дородовых обследований является оценка генетического риска, то есть вероятности того, что ребенок родится с генетической патологией.

Пренатальная диагностика включает инвазивные (подразумевают вмешательство внутри организма ) и неинвазивные (без вмешательства ) методы. Инвазивные способы исследования назначаются пациенткам, которые уже вынашивают ребенка. Неинвазивные анализы могут быть проведены как при планировании беременности, так и во время нее.

Инвазивные анализы у генетика при беременности

Анализы инвазивного типа назначаются, для того чтобы определить, существуют ли у плода какие-либо генетические отклонения.

Генетик может назначить следующие анализы при беременности:

  • амниоцентез (записаться ) ;
  • плацентоцентез;
  • кордоцентез;
  • фетоскопия.
Амниоцентез
Целью этого анализа является лабораторное исследование жидкости, которая окружает плод в утробе женщины (также называется околоплодной или амниотической жидкостью ). Чтобы получить материал для анализа, врач прокалывает брюшную стенку пациентке тонкой иглой. Во время процедуры проводится мониторинг (контроль ) состояния женщины при помощи ультразвукового сканера. В зависимости от болевого порога пациентки амниоцентез проводится совсем без обезболивания, либо используется местная анестезия .

Оптимальным сроком для проведения амниоцентеза является период с 16 по 18 неделю беременности, когда размеры плода еще невелики, но уже достаточно околоплодных вод.
Полученная жидкость (не более 30 миллилитров ) отправляется на генетический анализ. Данные такого исследования позволяют выявить у плода наличие таких серьезных хромосомных заболеваний как синдром Дауна, синдром Патау.

Кордоцентез
Это исследование проводится путем прокалывания пуповины плода для изъятия его крови и ее последующего изучения в лаборатории. Прокол проводится через брюшную стенку беременной женщины. Количество материала, требуемого для анализа, варьирует от 1 до 5 миллилитров. Оптимальное время для проведения этого анализа – с 21 по 25 неделю беременности. Именно в этот период сосуды в пуповине достигают нужного размера, для того чтобы провести безопасный забор крови.

Кордоцентез является более информативным анализом, чем амниоцентез. С его помощью можно выявить не только хромосомные патологии, но и болезни крови, мышечную дистрофию , различные внутриутробные инфекции . В большинстве случаев процедура проводится без какого-либо наркоза, но после нее пациентка должна оставаться несколько часов под наблюдением врача.

Плацентоцентез
В ходе этой процедуры осуществляется изъятие небольшого фрагмента плаценты , который затем подвергается лабораторному анализу. В большинстве случаев требует общего или местного наркоза. После проведения плацентоцентеза женщина должна находиться под врачебным наблюдением не менее 2 дней.

Этот анализ позволяет определить наличие у плода различных разных наследственных аномалий, которые сопровождаются умственными или физическими патологиями. В отличие от 2 предыдущих исследований плацентоцентез можно проводить на более ранних сроках (начиная с 12 недели беременности ), что и определяет его ценность.

Фетоскопия
Это исследование проводится при помощи фетоскопа (тонкой трубки, оснащенной источником света и линзами ), который вводится через небольшие разрезы в животе беременной женщины. С помощью прибора врач осматривает плод с целью выявления видимых физических аномалий. Также во время фетоскопии может быть изъят биоматериал плода (кровь, фрагменты кожи ) для изучения в лаборатории.

Фетоскопия является одним из самых информативных анализов и позволяет выявить редкие заболевания, которые не могут быть установлены при помощи других диагностических процедур. Вместе с тем это исследование относят к категории опасных и назначают редко, так как примерно в 5% случаев оно приводит к прерыванию беременности.

Показания к проведению инвазивных анализов

Показания для инвазивного исследования могут быть абсолютными или относительными. Абсолютными является те, которые обязательно требуют (в случае если нет противопоказаний ) проведения исследования. К ним относятся отягощенная наследственность (наличие заболеваний, которые передаются по наследству у отца или матери ), наличие старшего ребенка с той или иной генетической патологией, плохие результаты скрининга (плановых обследований во время беременности ). Возраст беременной женщины старше 35 – 40 лет также является абсолютным показанием к проведению одного из инвазивных анализов.

При относительных показаниях врач определяет целесообразность проведения исследования, ориентируясь на состояние пациентки и другие факторы. К таким показаниям относятся сложное течение беременности, инфекции, сахарный диабет и другие эндокринные заболевания у беременной. Относительными показаниями для проведения такой процедуры также являются прием медикаментов с мутагенным действием, прохождение рентгена при беременности.

Противопоказания для инвазивной диагностики

Для каждого анализа, который проводится инвазивным методом, существуют особенные противопоказания. Но есть и общие противопоказания для всех видов таких диагностических процедур. Так, к ним относится инфекционное поражение кожи живота, так как через прокол инфекция может проникнуть к плоду. Острая форма или обострение какого-нибудь хронического заболевания, повышенная температура , общее неудовлетворительное состояние беременной также являются противопоказаниями для инвазивных процедур. Угроза прерывания беременности, патологии матки (миома , повышенный тонус ), аномалии плаценты – все эти состояния также являются противопоказаниями для инвазивных методов исследования.

Неинвазивные анализы у генетика при планировании беременности и во время нее

Принцип большинства диагностических неинвазивных анализов, которые может назначить генетик, заключается в изъятии биоматериала (чаще крови ) пациентки (или и ее партнера ) для последующего лабораторного изучения.

Различают следующие методы неинвазивных диагностических процедур:

  • хромосомный анализ;
  • анализ генетической совместимости;
  • генетический анализ крови ;
  • ультразвуковое исследование (УЗИ ).
Хромосомный анализ
Хромосомный анализ (также называется анализ на кариотип ) назначается мужчине и женщине в период планирования ребенка. Цель исследование – изучить количественный и качественный состав хромосом у обоих супругов. Для проведения анализа осуществляется забор венозной крови (иногда и спермы ), из которой затем выделяются необходимые вещества и подвергаются изучению. Это исследование позволяет выявить мутации хромосом у мужчины или женщины, которые могут стать причиной развития у ребенка тех или иных аномалий.

Анализ на кариотип позволяет установить следующие аномалии:

  • Лишняя хромосома. Проявляется синдромом Дауна, синдромом Патау и другими заболеваниями, которые сопровождаются задержкой умственного развития. Следует отметить, что пациенты с этой аномалией редко обращаются к генетику по поводу планирования ребенка, так как она редко протекает незамеченной и с ранних лет приводит к инвалидности .
  • Отсутствие одной хромосомы. Диагностируется только у женщин и приводит к бесплодию, а также некоторым аномалиям в развитии.
  • Отсутствие участка хромосомы. В зависимости от того, какой именно участок хромосомы отсутствует, может проявляться физическими уродствами (расщелиной в небе, лишними пальцами ), болезнями разных органов (чаще печени ), проблемами с умственным развитием. У мужчин отсутствие участка хромосомы становится причиной бесплодия.
  • Удвоение кончика хромосомы. Может стать причиной болезни

Миодистрофия Дюшенна — одно из нечасто встречающихся, но все же относительно распространенных генетических заболеваний. Болезнь диагностируется в трех-пятилетнем возрасте, обычно у мальчиков, проявляясь поначалу лишь в затрудненных движениях, к десяти годам страдающий такой миодистрофией уже не может ходить, к 20−22 годам его жизнь заканчивается. Она вызвана мутацией гена дистрофина, который находится в Х-хромосоме. Он кодирует белок, соединяющий мембрану мышечной клетки с сократительными волокнами. Функционально это своеобразная пружина, обеспечивающая плавное сокращение и целостность клеточной мембраны. Мутации в гене приводят к дистрофии скелетных мышечных тканей, диафрагмы и сердца. Лечение заболевания носит паллиативный характер и позволяет лишь немного облегчить страдания. Однако с развитием генной инженерии появился свет в конце тоннеля.

О войне и мире

Генная терапия — это доставка внутрь клетки конструкций на основе нуклеиновых кислот для лечения генетических заболеваний. С помощью такой терапии можно исправить генетическую проблему на уровне ДНК и РНК, меняя процесс экспрессии нужного белка. Например, в клетку можно доставить ДНК с исправленной последовательностью, с которой синтезируется функциональный белок. Или, напротив, возможны удаления определенных генетических последовательностей, что также поможет уменьшить вредные последствия мутации. В теории это просто, однако на практике генная терапия базируется на сложнейших технологиях работы с объектами микромира и представляет собой совокупность передовых ноу-хау в области молекулярной биологии.


Инъекция ДНК в пронуклеус зиготы — одна из самых ранних и наиболее традиционных технологий создания трансгенов. Инъекция производится вручную с помощью сверхтонких игл под микроскопом с 400-кратным увеличением.

«Ген дистрофина, мутации которого порождают миодистрофию Дюшенна, огромный, — рассказывает директор по развитию биотехнологической компании «Марлин Биотех», кандидат биологических наук Вадим Жерновков. — Он включает в себя 2,5 млн пар нуклеотидов, что можно было бы сравнить с количеством букв в романе «Война и мир». И вот представим себе, что мы вырвали из эпопеи несколько каких-то важных страниц. Если на этих страницах описываются существенные события, то понимание книги было бы уже затруднено. Но с геном все сложнее. Найти другую копию «Войны и мира» несложно, и тогда недостающие страницы можно было бы прочитать. Но ген дистрофина находится в X-хромосоме, а у мужчин она одна. Таким образом, в половых хромосомах у мальчиков при рождении хранится лишь одна копия гена. Другую взять негде.


Наконец, при синтезе белка из РНК важно сохранение рамки считывания. Рамка считывания определяет, какая группа из трех нуклеотидов считывается как кодон, что соответствует одной аминокислоте в белке. Если произошло удаление в гене фрагмента ДНК, не кратное трем нуклеотидам, происходит сдвиг рамки считывания — кодировка изменяется. Это можно было бы сравнить с ситуацией, когда после вырванных страниц во всей оставшейся книге все буквы заменятся на следующие по алфавиту. Получится абракадабра. Вот то же самое происходит с неправильно синтезируемым белком».

Биомолекулярный пластырь

Один из эффективных методов генной терапии для восстановления нормального синтеза белка — пропуск экзонов с помощью коротких нуклеотидных последовательностей. В «Марлин Биотех» уже отработана технология работы с геном дистрофина с помощью такого метода. Как известно, в процессе транскрипции (синтеза РНК) сначала формируется так называемая прематричная РНК, заключающая в себе как кодирующие белок участки (экзоны), так и некодирующие (интроны). Далее начинается процесс сплайсинга, в ходе которого интроны и экзоны разъединяются и формируется «зрелая» РНК, состоящая только из экзонов. В этот момент некоторые экзоны можно заблокировать, «залепить» с помощью особых молекул. В итоге в зрелой РНК не окажется тех кодирующих участков, от которых мы предпочли бы избавиться, и таким образом восстановится рамка считывания, белок будет синтезироваться.


«Эту технологию мы отладили in vitro, — рассказывает Вадим Жерновков, то есть на клеточных культурах, выращенных из клеток пациентов с миодистрофией Дюшенна. Но отдельные клетки — это не организм. Вторгаясь в процессы клетки, мы должны наблюдать последствия вживую, однако привлечь к испытаниям людей не представляется возможным по разным причинам — от этических до организационных. Поэтому возникла необходимость получения модели миодистрофии Дюшенна с определенными мутациями на основе лабораторного животного».

Как уколоть микромир

Трансгенные животные — это полученные в лаборатории животные, в геном которых целенаправленно, осознанно внесены изменения. Еще в 70-е годы прошлого века стало понятно, что создание трансгенов — это важнейший метод исследования функций генов и белков. Одним из самых ранних методов получения полностью генно-модифицированного организма стала инъекция ДНК в пронуклеус («предшественник ядра») зигот оплодотворенных яйцеклеток. Это логично, так как модифицировать геном животного проще всего в самом начале его развития.


На схеме продемонстрирован процесс CRISPR/Cas9, в котором участвуют субгеномная РНК (sgRNA), ее участок, работающий как РНК-гид, а также белок-нуклеаза Cas9, который рассекает обе нити геномной ДНК в указанном РНК-гидом месте.

Инъекция в ядро зиготы — весьма нетривиальная процедура, ведь речь идет о микромасштабах. Яйцеклетка мыши имеет диаметр 100 мкм, а пронуклеус — 20 мкм. Операция происходит под микроскопом с 400-кратным увеличением, однако инъекция — это самая что ни на есть ручная работа. Разумеется, для «укола» применяется не традиционный шприц, а специальная стеклянная игла с полым каналом внутри, куда набирается генный материал. Один ее конец можно держать в руке, а другой — сверхтонкий и острый — практически не виден невооруженным глазом. Конечно, такая хрупкая конструкция из боросиликатного стекла не может храниться долго, поэтому в распоряжении лаборатории есть набор заготовок, которые непосредственно перед работой вытягиваются на специальном станке. Используется особая система контрастной визуализации клетки без окрашивания — вмешательство в пронуклеус само по себе травматично и является фактором риска для выживания клетки. Краска стала бы еще одним таким фактором. К счастью, яйцеклетки достаточно живучи, однако количество зигот, которые дают начало трансгенным животным, составляют лишь несколько процентов от общего числа яйцеклеток, в которые была сделана инъекция ДНК.

Следующий этап — хирургический. Проводится операция по трансплантации микроинъецированных зигот в воронку яйцевода мыши-реципиента, которая станет суррогатной матерью будущим трансгенам. Далее лабораторное животное естественным путем проходит цикл беременности, и на свет появляется потомство. Обычно в помете находится около 20% трансгенных мышат, что также говорит о несовершенстве метода, ибо в нем присутствует большой элемент случайности. При инъекции исследователь не может контролировать, как именно внедренные фрагменты ДНК встроятся в геном будущего организма. Высока вероятность таких комбинаций, которые приведут к гибели животного еще на эмбриональной стадии. Тем не менее метод работает и вполне годен для ряда научных целей.


Развитие трансгенных технологий позволяет производить животные белки, востребованные фармацевтической промышленностью. Эти белки экстрагируются из молока трансгенных коз и коров. Также есть технологии получения специфических белков из куриного яйца.

Ножницы для ДНК

Но есть более эффективный способ на основе целевого редактирования генома по технологии CRISPR/Cas9. «Сегодня молекулярная биология в чем-то подобна эпохе дальних морских экспедиций под парусами, — говорит Вадим Жерновков. — Практически каждый год в этой науке происходят значительные открытия, которые могут изменить нашу жизнь. Например, несколько лет назад микробиологи обнаружили у давно, казалось бы, изученного вида бактерий иммунитет к вирусным инфекциям. В результате дальнейших исследований выяснилось, что ДНК бактерий содержат в себе особые локусы (CRISPR), с которых синтезируются фрагменты РНК, умеющие комплементарно связываться с нуклеиновыми кислотами чужеродных элементов, например с ДНК или РНК вирусов. С такой РНК связывается белок Cas9, представляющий собой фермент-нуклеазу. РНК служит для Cas9 гидом, помечающим определенный участок ДНК, в котором нуклеаза совершает разрез. Примерно три-пять лет назад появились первые научные труды, в которых разрабатывалась технология CRISPR/Cas9 для редактирования генома».


Трансгенные мыши позволяют создавать живые модели тяжелых генетических заболеваний человека. Люди должны быть благодарны этим крохотным существам.

По сравнению со способом введения конструкции для случайного встраивания, новый метод позволяет подобрать элементы системы CRISPR/Cas9 таким образом, чтобы точно нацелить РНК-гиды на нужные участки генома и добиться целенаправленной делеции или вставки нужной последовательности ДНК. В этом методе тоже возможны ошибки (РНК-гид иногда соединяется не с тем участком, на который его нацеливают), однако при использовании CRISPR/Cas9 эффективность создания трансгенов составляет уже около 80%. «Этот метод имеет широкие перспективы, и не только для создания трансгенов, но и в других областях, в частности в генной терапии, — говорит Вадим Жерновков. — Однако технология находится только в начале пути, и представить себе, что в ближайшее время исправлять генный код людей будут с помощью CRISPR/Cas9, довольно сложно. Пока есть вероятность ошибки, есть и опасность, что человек лишится какой-то важной кодирующей части генома».


Молоко-лекарство

Российской компании «Марлин Биотех» удалось создать трансгенную мышь, в которой полностью воспроизведена мутация, приводящая к миодистрофии Дюшенна, и следующим этапом станут испытания технологий генной терапии. Вместе с тем создание моделей генетических заболеваний человека на основе лабораторных животных — не единственное возможное применение трансгенов. Так, в России и западных лабораториях ведутся работы в области биотехнологий, позволяющие получать важные для фарминдустрии лекарственные белки животного происхождения. В качестве продуцентов могут выступать коровы или козы, у которых можно изменять клеточный аппарат производства содержащихся в молоке белков. Из молока можно экстрагировать лекарственный белок, который получен не химическим способом, а с помощью природного механизма, что повысит эффективность лекарства. В настоящее время разработаны технологии получения таких лекарственных белков, как лактоферрин человека, проурокиназа, лизоцим, атрин, антитромбин и другие.

Генная терапия – одна из стремительно развивающихся областей медицины, которая предполагает лечение человека посредством введения в организм здоровых генов. Причем, как утверждают ученые, с помощью генной терапии можно добавить недостающий ген, исправить или заменить его, улучшив тем самым работу организма на клеточном уровне и нормализовав состояние больного.

По словам ученых, потенциальными кандидатами для генной терапии на сегодняшний день являются 200 млн. жителей планеты, причем эта цифра неуклонно растет. И очень отрадно, что несколько тысяч пациентов уже получили лечение от неизлечимых недугов в рамках проводимых испытаний.

В данной статье расскажем о том, какие задачи ставит перед собой генная терапия, какие заболевания можно лечить этим методом и с какими проблемами приходится сталкиваться ученым.

Где применяется генотерапия

Изначально генная терапия была задумана для борьбы с тяжелыми наследственными заболеваниями, такими как болезнь Хантингтона, муковисцидоз (кистозный фиброз) и некоторыми инфекционными заражениями. Однако 1990-й год, когда ученым удалось скорректировать дефектный ген, и, введя его в организм больного, победить муковисцидоз, стал поистине революционным в области генной терапии. Миллионы людей во всем мире получили надежду на лечение заболеваний, которые прежде считались неизлечимыми. И пусть такая терапия находится у самых истоков развития, ее потенциал вызывает удивление даже в научном мире.

Так, например, кроме кистозного фиброза, современные ученые добились успехов борьбе с такими наследственными патологиями, как гемофилия, энзимопатия и иммунодефицит. Более того, лечение генами позволяет бороться с некоторыми онкологическими заболеваниями, а также с патологиями сердца, болезнями нервной системы и даже травмами, к примеру, с повреждениями нервов. Таким образом, генная терапия занимается заболеваниями с крайне тяжелым протеканием, которые приводят к ранней смертности и, зачастую, не имеют другого лечения, кроме терапии генами.

Принцип лечения генами

В качестве действующего вещества врачи используют генетическую информацию, а если быть точным, молекулы, которые являются носителями такой информации. Реже для этого применяют нуклеиновые кислоты РНК, а чаще – клетки ДНК.

Каждая такая клетка обладает так называемым «ксероксом» – механизмом, при помощи которого она переводит генетическую информацию в белки. Клетка, у которой имеется правильный ген и без сбоев работает «ксерокс», с точки зрения генной терапии является здоровой клеткой. У каждой здоровой клетки имеется целая библиотека оригинальных генов, которые она использует для правильной и слаженной работы всего организма. Однако если по какой-либо причине важный ген утерян, восстановить такую потерю не представляется возможным.

Это становится причиной развития серьезных генетических заболеваний, таких как миодистрофия Дюшена (при ней у больного прогрессирует мышечный паралич, и он в большинстве случаев не доживает до 30 лет, умирая от остановки дыхания). Или менее фатальная ситуация. К примеру, «поломка» определенного гена приводит к тому, что белок перестает выполнять свои функции. И это становится причиной развития гемофилии.

В любом из перечисленных случаев на помощь приходит генная терапия, задачей которой является доставить нормальную копию гена в больную клетку и подложить в её в клеточный «ксерокс». В этом случае наладится работа клетки, а может быть, восстановится функционирование всего организма, благодаря чему человек избавится от тяжелого недуга и сможет продлить свою жизнь.

Какие болезни лечит генная терапия

Насколько реально помогает человеку генная терапия? По подсчетам ученых, в мире насчитывается около 4200 заболеваний, которые возникают в результате неправильной работы генов. В этом плане потенциал у данного направления медицины просто невероятный. Однако гораздо важнее то, чего на сегодняшний день удалось добиться медикам. Безусловно, на этом пути хватает трудностей, однако уже сегодня можно выделить ряд локальных побед.

К примеру, современные ученые разрабатывают подходы к лечению ишемической болезни сердца посредством генов. А ведь это невероятно распространенное заболевание, которое поражает гораздо больше людей, чем врожденные патологии. В конечном итоге, человек, столкнувшийся с ишемической болезнью, оказывается в таком состоянии, когда единственным спасением для него может стать генная терапия.

Более того, на сегодняшний день при помощи генов лечатся патологии, связанные с поражением центральной нервной системы. Это такие заболевания, как боковой амиотрофический склероз, болезнь Альцгеймера или болезнь Паркинсона. Что интересно, для лечения перечисленных недугов используются вирусы, которые имеют свойство атаковать нервную систему. Так, при помощи вируса герпеса в нервную систему доставляют цитокины и факторы роста, замедляющие развитие заболевания. Это яркий пример того, как патогенный вирус, который обычно вызывает болезнь, обрабатывается в лабораторных условиях, лишаясь белков, несущих заболевание, и используется как кассета, которая доставляет в нервы целебные вещества и тем самым действует во благо здоровья, продлевая жизнь человека.

Еще одним тяжелым наследственным заболеванием является холестеринемия, которая приводит организм человека к неспособности регулировать холестерин, вследствие чего в его организме скапливаются жиры, и возрастает риск инфарктов и инсультов. Чтобы справиться с этой проблемой, специалисты удаляют больному часть печени и исправляют поврежденный ген, останавливая дальнейшее накопление холестерина организмом. После этого исправленный ген помещают в обезвреженный вирус гепатита, и с его помощью отправляют обратно в печень.

Читайте также:

Имеются положительные подвижки и в борьбе со СПИДом. Не секрет ведь, что СПИД вызывается вирусом иммунодефицита человека, который разрушает иммунную систему и открывает ворота к организму смертельно опасным заболеваниям. Современные ученые уже знают, каким образом изменить гены, чтобы они перестали ослаблять иммунную систему, а начали укреплять ее для противодействия вирусу. Такие гены вводятся через кровь, посредством ее переливания.

Работает генная терапия и против раковых заболеваний, в частности, против рака кожи (меланомы). Лечение таких пациентов предполагает введение генов с факторами некроза опухоли, т.е. генов, которые содержат противоопухолевый белок. Более того, сегодня проводятся испытания по лечению рака мозга, где больным пациентам вводят ген, содержащий информацию по увеличению чувствительности злокачественных клеток к применяемым препаратам.

Болезнь Гоше представляет собой тяжелейшее наследственное заболевание, которое вызывается мутацией гена, подавляющего производство особого фермента – глюкоцереброзидазы. У лиц, страдающих от этого неизлечимого недуга, увеличена селезенка и печень, а с прогрессированием недуга начинают разрушаться кости. Ученым уже сегодня удались опыты по введению в организм таких пациентов гена, содержащего информацию по выработке данного фермента.

А вот еще один пример. Не секрет, что ослепший человек на всю оставшуюся жизнь лишается возможности воспринимать зрительные образы. Одной из причин врожденной слепоты считается так называемая атрофия Лебера, которая, по сути, является генной мутацией. На сегодняшний день ученые вернули 80 слепым людям зрительные способности, посредством модифицированного аденовируса, который доставил «рабочий» ген в ткани глаза. К слову, несколько лет назад ученым удалось вылечить дальтонизм у подопытных обезьян, путем внедрения в сетчатку глаза животного здорового человеческого гена. А совсем недавно такая операция позволила вылечить дальтонизм первым пациентам.

Что характерно, метод доставки генной информации при помощи вирусов является самым оптимальным, так как вирусы сами находят свои цели в организме (вирус герпеса обязательно найдет нейроны, а вирус гепатита – печень). Однако у данного метода доставки генов есть существенный недостаток – вирусы иммуногены, а значит, при попадании в организм могут быть уничтожены иммунитетом до того, как успеют сработать, а то и вызовут мощные иммунные ответы организма, лишь ухудшив состояние здоровья.

Существует и другой способ доставки генного материала. Это кольцевая молекула ДНК или плазмида. Она отлично спирализуется, становясь очень компактной, что позволяет ученым «упаковать» ее в химический полимер и внедрить в клетку. В отличие от вируса, плазмида не вызывает иммунной реакции организма. Однако этот способ менее подходящий, т.к. спустя 14 дней плазмида удаляется из клетки и продукция белка останавливается. То есть, таким способом ген необходимо вводить на протяжении длительного времени, пока клетка будет «выздоравливать».

Таким образом, у современных ученых есть два мощных метода доставки генов к «больным» клеткам, причем использование вирусов выглядит более предпочтительным. В любом случае окончательное решение по выбору того или иного метода выбирает врач, исходя из реакции организма пациента.

Проблемы, с которыми сталкивается генотерапия

Можно сделать определенный вывод о том, что генная терапия – малоизученная область медицины, которая сопряжена с большим количеством неудач и побочных эффектов, и в этом ее огромный недостаток. Однако есть еще и этический вопрос, ведь многие ученые выступают категорически против вмешательства в генетическое строение человеческого организма. Именно поэтому, сегодня существует международный запрет на использование в генотерапии половых клеток, а также доимплантационных зародышевых клеток. Сделано это для того, чтобы предотвратить нежелательные генные изменения и мутации у наших потомков.

В остальном же, генная терапия не нарушает никаких этических норм, ведь она призвана бороться с тяжелыми и неизлечимыми заболеваниями, в которых официальная медицина попросту бессильна. И в этом самое главное преимущество лечения генами.
Берегите себя!

Окружающая среда никогда не была постоянной. Даже в прошлом она не была абсолютно здоровой. Однако существует принципиальное отличие современного периода в истории человечества от всех предыдущих. В последнее время темпы изменения среды стали столь ускоренными, а диапазон изменения так расширился, что проблема изучения последствий стала неотложной.

Отрицательное влияние среды на наследственность человека может выражаться в двух формах:

    факторы среды могут «разбудить» молчавший или заставить «замолчать» работающий ген,

    факторы среды могут вызвать мутации, т.е. изменить генотип человека.

К настоящему времени груз мутаций в популяциях человека составил 5%, а список наследственных заболеваний включает около 2000 болезней. Ощутимый вред человечеству наносят новообразования, вызванные мутациями соматических клеток. Возрастание числа мутаций влечёт за собой рост естественных выкидышей. Сегодня во время беременности погибает до 15% плодов.

Одной из важнейших задач сегодняшнего дня является задача создания службы мониторинга за генофондом человека, которая бы регистрировала число мутаций и темпы мутирования. Несмотря на кажущуюся простоту этой задачи, реальное её решение сталкивается с целым рядом трудностей. Главная трудность состоит в огромном генетическом разнообразии людей. Огромным является и число генетических отклонений от нормы.

В настоящее время отклонениями от нормы в генотипе человека и их фенотипическим проявлением занимается медицинская генетика, в рамках которой разрабатываются методы профилактики, диагностики и лечения наследственных болезней.

Методы профилактики наследственных заболеваний.

Профилактика наследственных болезней может проводиться несколькими способами.

А) Могут проводиться мероприятия, направленные на ослабление действия мутагенных факторов: уменьшение дозы облучения, снижение количества мутагенов в окружающей среде, предупреждение мутагенных свойств сывороток и вакцин.

Б) Перспективным направлением является поиск антимутагенных защитных веществ . Антимутагены – это соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие поражение с молекулы ДНК, вызванные мутагенами. С этой целью применяют цистеин, после введения которого организм мыши оказывается способным переносить смертельную дозу радиации. Антимутагенными свойствами обладает ряд витаминов.

В) Целям профилактики наследственных болезней служит генетическое консультирование. При этом предупреждаются близкородственные браки (инбридинг), поскольку при этом резко возрастает вероятность рождения детей, гомозиготных по аномальному рецессивному гену. Выявляются гетерозиготные носители наследственных заболеваний. Врач-генетик- не юридическое лицо, он не может запретить или разрешить консультируемым иметь детей. Его цель – помочь семье реально оценить степень опасности.

Методы диагностики наследственных заболеваний.

А) Метод массовой (просеивающей) диагностики .

Данный метод используют применительно к новорождённым с целью выявления галактоземии, серповидно-клеточной анемии, фенилкетонурии.

Б) Ультразвуковое обследование.

В 70-е годы на 1У Международном генетическом конгрессе прозвучала идея о внедрении в медицинскую практику дородовой диагностики наследственных заболеваний. Сегодня наиболее широко используется метод ультразвукового обследования. Главное его достоинство состоит в массовости обследования и возможности выявить отклонения на 18 – 23 неделе беременности, когда плод ещё самостоятельно нежизнеспособен.

В) Амниоцентез.

На сроке беременности 15-17 недель прокалывают шприцем плодный пузырь и отсасывают небольшое количество плодной жидкости, в которой есть слущенные клетки эпидермиса плода. Эти клетки 2 – 4 недели выращивают в культуре на специальных питательных средах. Затем с помощью биохимического анализа и изучения хромосомного набора можно выявить около 100 генных и практически все хромосомные и геномные аномалии. Метод амниоцентеза успешно используется в Японии. Здесь обязательно и бесплатно обследуют всех женщин старше 35 лет, а также женщин уже имеющих детей с отклонениями от нормы. Амниоцентез – относительно трудоёмкая и дорогостоящая процедура, но экономисты подсчитали, что стоимость анализа для 900 женщин намного дешевле, чем стоимость прижизненной госпитализации одного больного с наследственными аномалиями.

Г) Цитогенетический метод.

Изучаются образцы крови людей с целью определения аномалий хромосомного аппарата. Особенно важно это при определении носительства заболеваний у гетерозигот.

Д) Биохимический метод.

Основывается на генетическом контроле синтеза белков. Регистрация различных видов белков позволяет оценить частоту мутаций.

Методы лечения наследственных болезней.

А) Диетотерапия.

Заключается в установлении правильно подобранной диеты, которая снизит тяжесть проявления болезни. Например, при галактоземии патологическое изменение наступает в силу того, что нет фермента, расщепляющего галактозу. Галактоза накапливается в клетках, вызывая изменения в печени и головном мозге. Лечение болезни проводят, назначая диету, исключающую в продуктах галактозу. Генетический дефект при этом сохраняется и передаётся потомству, но обычные проявления болезни у человека, использующего данную диету, отсутствуют.

Б) Введение в организм недостающего фактора.

При гемофилии проводят инъекции белка, который временно улучшает состояние больного. В случае наследственных форм сахарного диабета в организме не вырабатывается инсулин, регулирующий углеводный обмен. В этом случае инсулин вводят в организм.

В) Хирургические методы.

Некоторые наследственные заболевания сопровождаются анатомическими отклонениями от нормы. В этом случае используется хирургическое удаление органов или их частей, коррекция, трансплантация. Например, при полипозе удаляют прямую кишку, оперируют врождённые пороки сердца.

Г) Генная терапия – устранение генетических ошибок. Для этого в соматические клетки организма включают одиночный нормальный ген. Этот ген в результате размножения клеток заменит патологический ген. Генная терапия через зародышевые клетки осуществляется в настоящее время на животных. Нормальный ген встраивается в яйцеклетку с аномальным геном. Яйцеклетка имплантируется в организм самки. Из данной яйцеклетки развивается организм с нормальным генотипом. Генная терапия планируется к применению лишь в тех случаях, когда болезнь угрожает жизни и не подлежит лечению другими способами.

За страницами школьного учебника.

Некоторые вопросы евгенизма.

Идея искусственного улучшения человека не нова. Но только в 1880г. появилось понятие «евгенизм». Слово это ввёл двоюродный брат Ч. Дарвина – Ф. Гальтон. Он определял евгенику как науку об улучшении потомства, которая отнюдь не ограничивается вопросами разумных скрещиваний, но, особенно в случае человека, занимается всеми воздействиями, которые способны дать наиболее одарённым расам максимальные шансы преобладать над расами менее одарёнными.

Сам термин «евгенизм» происходит от греческого слова, обозначающего человека хорошего рода, знатного происхождения, хорошей расы.

Гальтон несомненно признавал определённую роль среды в развитии индивидуума, но в конечном счёте он считал, что «раса» важнее среды, т.е. он делал упор на то, что мы сегодня называем генетическим фактором.

Идея об улучшении популяции человека с помощью биологических методов имеет большое прошлое. Рассуждения подобного типа историки находили ещё у Платона. Тем не менее Гальтон был оригинален, разработав законченную теорию. Его произведения представляют собой основной источник, к которому следует обращаться при анализе того, что происходит сегодня. Согласно Гальтону, основанная им евгеника заслуживала статуса науки. Под определённым углом зрения, евгенизм действительно содержит в себе нечто научное, он использует некоторые теории и результаты из области биологии, антропологии, демографии, психологии и др. Очевидно, однако, что основа евгенизма социальная и политическая. Теория имела практическую конечную цель – сохранить наиболее «одарённые расы», увеличить численность элиты нации.

Под влиянием собственных неудач, постигших его в Кембридже, Гальтон пристально заинтересовался следующей проблемой: каково происхождение наиболее одарённых людей. Он написал работы, в которых с помощью статистики старался подтвердить гипотезу, подсказанную ему личными убеждениями, что наиболее одарённые индивидуумы часто бывают близкими родственниками людей, которые тоже одарены. Принцип проведения исследований был у Гальтона простым: он изучал популяции людей, принадлежащих к социальной элите (судьи, государственные деятели, учёные). Он выявил довольно значительное число их близких родственников, которые сами были видными деятелями. Сравнения производились методически с учётом различной степени родства. Установленные таким образом корреляции были явно нестабильными и ограниченными. В действительности интерпретация этих статистических данных в пользу тезиса о биологическом наследовании ни в коей мере не была очевидной. Но сам Гальтон принадлежал к английской элите, поэтому психологически ему было довольно легко допустить наследование гениальности.

В истории биологии роль Гальтона обычно недооценивается. Биологи не воспринимали Гальтона как специалиста: интересы биологические у него были подчинены более общим интересам. И всё же именно он за 10 лет до Вейсмана сформулировал два основных положения его теории. Гальтон проявил интерес к генетике и в связи с тем, что он приписывал наследственности важную роль в социальных явлениях.

Применение евгенизма в области науки в некоторых случаях оказывается плодотворным, но в целом евгеника лишена научной основы. Проект улучшения отдельных рас, наиболее одарённых, опирается, прежде всего, на идеологические и политические мотивы. Тот факт, что генетика может обеспечить евгенистов какими-то аргументами, абсолютно не доказывает ни истинности, ни этической правомерности этого проекта. Понятие «расы» в трактовка Гальтона весьма растяжимо. Прежде всего оно может соответствовать распространённому представлению о расе: жёлтая, белая, чёрная. Использует он понятие «раса» и более гибко: расу образует любая однородная популяция, в которой определённые признаки стойко передаются по наследству. Такая идея в высшей степени спорна. Критерии «хорошей расы» сами по себе довольно расплывчаты, но главными среди них являются такие качества как ум, энергия, физическая сила и здоровье.

В 1873г. Гальтон опубликовал статью «Об улучшении наследственности». В ней он объясняет, что первейшей обязанностью человечества является добровольное участие в общем процессе естественного отбора. По мнению Дальтона, люди должны методично и быстро делать то, что природа делает слепо и медленно, а именно: благоприятствовать выживанию наиболее достойных и замедлять или прерывать воспроизведение недостойных. Многие политические деятели благосклонно выслушивали такие высказывания. Приводились впечатляющие цифры: между 1899 и 1912г.г. в США в штате Индиана было произведено 236 операций вазэктомии умственно отсталым мужчинам. Тот же штат в 1907г. проголосовал за закон, предусматривающий стерилизацию наследственных дегенератов, затем так же поступила Калифорния и ещё 28 штатов. В 1935г. общее число операций по стерилизации достигло 21539. Не все евгенистские мероприятия были такими грубыми, хотя в основе их лежала одна и та же философия селекции наиболее одарённых людей. Заслуживает внимания тот факт, что люди науки, пользующиеся большой известностью, не колеблясь предлагали очень суровые меры. Лауреат Нобелевской премии француз Карел в 1935г. опубликовал свой труд «Это неизвестное существо человек», который имел необыкновенный успех. В этой книге автор объяснял, что учитывая ослабление естественного отбора, необходимо восстановить «биологическую наследственную аристократию». Сожалея о наивности цивилизованных наций, проявляющейся в сохранении бесполезных и вредных существ, он советовал создавать специальные заведения для осуществления эвтаназии преступников.

Таким образом, понятие «евгенизм» охватывает многообразные проявления действительности, но всё многообразие можно свести к двум формам: евгенизм воинственный (сознательный) и евгенизм «мягкий» (бессознательный). Первый наиболее опасен. Это он породил газовые камеры нацистов. Но было бы ошибкой считать второй безвредным. Ему тоже присуща двусмысленность: некоторые мероприятия, связанные с выявлением и предупреждением наследственных болезней, представляют собой зачаточную форму евгенизма.

Отличие евгенизма от социального дарвинизма.

Сторонники социального дарвинизма проповедуют невмешательство. Они полагают, что соревнование между людьми полезно и благодаря борьбе за существование будет обеспечено выживание лучших индивидуумов, поэтому достаточно не препятствовать процессу отбора, протекающему спонтанно.

Что касается евгенизма, то ему присуще нечто полицейское: его цель – установить авторитарную систему, способную производить «научным способом» хороших индивидуумов и хорошие гены, в которых нуждается нация. Тут легко покатиться по наклонной плоскости: начинают с установления карт генетической идентичности, увеличивают число проверок для установления пригодности к браку, перекрывают каналы, ведущие к порочным элементам, и тогда наступает очередь заключительного акта, например, эвтаназии – гуманной и экономичной. Нацистский евгенизм имел сверхнаучное обоснование. Гитлер, чтобы оправдать культ «чистой расы», недвусмысленно ссылается на биологию размножения и теорию эволюции.

Что значит быть евгенистом сегодня?

Со времён Гальтона положение сильно изменилось. Годы существования нацизма привели к тому, что евгенизму в плане идеологическом и социальном пришлось отступить. Но огромные успехи биологии и генной инженерии сделали возможным возникновение неоевгенизма. Большим новшеством была разработка методов, позволяющих выявить «плохие» гены, т.е. гены, ответственные за заболевания. Выявлять генетические дефекты можно на разных стадиях. В одних случаях обследуют людей, желающих иметь детей, в других – беременных женщин. Если у плода выявляется серьёзная аномалия, то может быть поставлен вопрос об аборте. Выявляя серьёзные генетические ошибки у новорождённых, в результате раннего лечения можно восстановить утраченную функцию. Таким образом, возникла новая ситуация: отныне можно планировать грандиозную долгосрочную операцию по капитальной очистке генофонда человечества. Это поднимает многочисленные вопросы как технического, так и этического порядка. Прежде всего, где остановиться при выбраковке генов? Идеал беспощадного генетического отбора представляется спорным в биологическом плане6 не может ли такой отбор привести к обеднению генофонда человечества? Мечта евгенистов – использовать отбор генов сродни отбору в животноводстве. Но именно животноводы имели возможность убедиться в том, что систематический отбор можно использовать лишь до определённого предела: при слишком усиленном улучшении разновидности её жизнеспособность иногда чрезмерно снижается. В настоящее время существует две основных тенденции, выступающие друг против друга. Один лагерь составляют сторонники жёстких мер. Они считают, что генная инженерия дала в руки человека оружие, которое должно быть использовано на благо человечества. Например, лауреат Нобелевской премии по физиологии и медицине Ледерберг является сторонником клонирования человеческих генов как эффективного средства для создания выдающихся людей. В другом лагере находятся те, кто требует объявить сферу генетики человека неприкосновенной. В США, благодаря частной инициативе уже организован сбор и консервация спермы лауреатов Нобелевской премии. Таким образом, если верить ответственным лицам, можно будет путём искусственного осеменения легко произвести на свет детей, имеющих выдающиеся таланты. В действительности ничто не позволяет утверждать, что такой проект научно обоснован.

Целый ряд фактов свидетельствует о том, что сегодня одновременно имеются разные причины, способствующие воскрешению евгенизма.

Тюйе П. «Соблазны евгенизма».

В кн. «Генетика и наследственность». М.: Мир, 1987.

Возможность лечения наследственных болезней еще недавно вызывала скептические усмешки - настолько укрепилось представление о фатальности наследственной патологии, полной беспомощности врача перед унаследованным дефектом. Однако если это мнение могло быть в определенной мере оправданным до середины 50-х годов, то в настоящее время, после создания ряда специфических и во многих случаях высокоэффективных методов лечения наследственных болезней, подобное заблуждение связано или с недостатком знаний, или, как справедливо отмечают К. С. Ладодо и С. М. Барашнева (1978), с трудностью ранней диагностики этих патологий. Их выявляют на стадии необратимых клинических расстройств, когда медикаментозная терапия оказывается недостаточно эффективной. Между тем современные методы диагностики всех видов наследственных аномалий (хромосомных болезней, моногенных синдромов и мультифакториальных болезней) позволяют определять заболевание на самых ранних стадиях. Успешность вовремя начатого лечения иногда бывает поразительной. Хотя сегодня борьба с наследственной патологией - дело специализированных научных учреждений, думается, что недалеко то время, когда больные после установления диагноза и начала патогенетического лечения будут поступать под наблюдение врачей обычных клиник и поликлиник. Это требует от практического врача знания основных методов лечения наследственной патологии - как уже существующих, так и разрабатываемых.

Среди разнообразных наследственных заболеваний человека особое место занимают наследственные болезни обмена веществ в связи с тем, что генетический дефект проявляется или в период новорожденности (галактоземия, муковисцидоз), или в раннем детстве (фенилкетонурия, галактоземия). Эти болезни занимают одно из первых мест среди причин детской смертности [Вельтищев Ю. Е., 1972]. Весьма оправдано то исключительное внимание, которое уделяется в настоящее время лечению этих заболеваний. В последние годы приблизительно при 300 из более чем 1500 наследственных аномалий обмена установлен конкретный генетический дефект, обусловливающий функциональную неполноценность фермента. Хотя в основе возникающего патологического процесса лежит мутация того или иного гена, участвующего в формировании ферментных систем, патогенетические механизмы этого процесса могут иметь совершенно различное выражение. Во-первых, изменение или отсутствие активности "мутантного" фермента может привести к блокированию определенного звена метаболического процесса, в силу чего в организме произойдет накопление метаболитов или первоначального субстрата, обладающих токсическим действием. Измененная биохимическая реакция может вообще пойти по "неправильному" пути, следствием чего окажется появление в организме вовсе не свойственных ему "чужеродных" соединений. Во-вторых, в силу тех же причин в организме может быть недостаточное образование тех или иных продуктов, что может иметь катастрофические последствия.

Следовательно, патогенетическая терапия наследственных болезней обмена веществ основана на принципиально разных подходах с учетом отдельных звеньев патогенеза.

ЗАМЕСТИТЕЛЬНАЯ ТЕРАПИЯ

Смысл заместительной терапии наследственных ошибок метаболизма прост: введение в организм отсутствующих или недостаточных биохимических субстратов.

Классическим примером заместительной терапии является лечение сахарного диабета. Применение инсулина позволило резко уменьшить не только смертность от этого заболевания, но и инвалидизацию больных. С успехом применяется заместительная терапия и при других эндокринных заболеваниях - препаратами йода и тироидина при наследственных дефектах синтеза тироидных гормонов [Жуковский М. А., 1971], глюкокортикоидами при аномалиях стероидного обмена, хорошо известных клиницистам как адреногенитальный синдром [Таболин В. А., 1973]. Одно из проявлений наследственных иммунодефицитных состояний - дисгаммаглобулинемия - довольно эффективно лечится введением гамма-глобулина и полиглобулина. На этом же принципе основано лечение гемофилии А переливанием донорской крови и введением антигемофильного глобулина.

Высокоэффективным оказалось лечение болезни Паркинсона при помощи L-3-4-дигидроксифенилаланина (L-ДОФА); эта аминокислота служит в организме предшественником медиатора дофамина. Введение больным L-ДОФА или его производных приводит к резкому увеличению концентрации дофамина в синапсах центральной нервной системы, что значительно облегчает симптоматику заболевания, особенно уменьшает мышечную ригидность.

Относительно просто проводится заместительная терапия некоторых наследственных болезней обмена, патогенез которых связан с накоплением продуктов метаболизма. Это переливание лейкоцитной взвеси или плазмы крови здоровых доноров при условии, что в "нормальных" лейкоцитах или плазме имеются ферменты, биотрансформирующие накапливающиеся продукты. Такое лечение дает положительный эффект при мукополисахаридозах, болезни Фабри, миопатиях [Давиденкова Е. Ф., Либерман П. С., 1975]. Однако заместительной терапии наследственных болезней обмена препятствует то, что многие ферментные аномалии локализованы в клетках центральной нервной системы, печени и т. д. Доставка к этим органам-мишеням тех или иных ферментативных субстратов затруднена, поскольку при их введении в организм развиваются соответствующие иммунопатологические реакции. В результате происходит инактивация или полное разрушение фермента. В настоящее время разрабатывают методы для предотвращения этого явления.

ВИТАМИНОТЕРАПИЯ

Витаминотерапия, т. е. лечение определенных наследственных болезней обмена введением витаминов, весьма напоминает заместительную терапию. Однако при заместительной терапии в организм вводят физиологические, "нормальные" дозы биохимических субстратов, а при витаминотерапии (или, как ее еще называют, "мегавитаминной" терапии) - дозы, в десятки и даже сотни раз большие [Барашнев Ю. И. и др., 1979]. Теоретической основой подобного метода лечения врожденных нарушения обмена и функции витаминов является следующее. Большинство витаминов на пути образования активных форм, т. е. коферментов, должны пройти этапы всасывания, транспоргировки и накопления в органах-мишенях. Каждый из этих этапов требует участия многочисленных специфических ферментов и механизмов. Изменение или извращение генетической информации, детерминирующей синтез и активность этих ферментов или их механизмы, может нарушить превращение витамина в активную форму и тем самым помешать ему осуществить свою функцию в организме [Спиричев В. Б., 1975]. Аналогичны и причины нарушения функции витаминов, не являющихся коферментами. Их дефект, как правило, опосредован взаимодействием с неким ферментом и при нарушении его синтеза или активности функция витамина окажется невыполнимой. Возможны и иные варианты наследственных нарушений функций витаминов, но их объединяет то, что симптоматика соответствующих заболеваний развивается при полноценном питании ребенка (в отличие от авитаминоза). Терапевтические дозы витаминов неэффективны, но иногда (при нарушении транспорта витамина, образования кофермента) парентеральное введение исключительно высоких доз витамина или готового кофермента, повышая в какой-то мере следовую активность нарушенных ферментных систем, приводит к терапевтическому успеху [Анненков Г. А., 1975; Спиричев Б. В.. 1975].

Например, болезнь "моча с запахом кленового сиропа" наследуется по аутосомно-рецессивному типу, встречается с частотой 1:60 000. При этом заболевании из организма в больших количествах экскретируются изовалериановая кислота и другие продукты обмена кето-кислот, что придает моче специфический запах. Симптоматика складывается из ригидности мускулатуры, судорожного синдрома, опистотонуса. Одну из форм заболевания успешно лечат избыточными дозами витамина B1 с первых дней жизни ребенка. К другим тиамин-зависимым нарушениям обмена веществ относится подострая некротизирующая энцефаломиелопатия и мегалобластическая анемия.

В СССР наиболее часто встречаются витамин В6-зависимые состояния [Таболин В. А., 1973], к которым относятся ксантуренурия, гомоцистинурия и др. При этих заболеваниях, связанных с генетическими дефектами пиридоксальзависимых ферментов кинурениназы и цистатионинсинтазы, развиваются глубокие изменения интеллекта, неврологические нарушения, судорожный синдром, дерматозы, аллергические проявления и т. д. Результаты раннего лечения этих заболеваний высокими дозами витамина В6 весьма обнадеживают [Барашнев Ю. И. и др., 1979]. Известные витаминзависимые нарушения обмена веществ следующие [по Барашневу Ю. И. и др., 1979].

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургические методы нашли широкое применение в лечении наследственных аномалий, прежде всего при исправлении таких пороков развития, как расщелина губы и нёба, полидактилия, синдактилия, врожденный стеноз привратника, врожденный вывих тазобедренного сустава. Благодаря успехам хирургии последних десятилетий стало возможным эффективно корригировать врожденные аномалии сердца и магистральных сосудов, пересаживать почки при их наследственном кистозном поражении. Определенные положительные результаты дает хирургическое лечение при наследственном сфероцитозе (удаление селезенки), наследственном гиперпаратиреозе (удаление аденом паращитовидных желез), тестикулярной ферминизации (удаление гонад), наследственном отосклерозе, болезни Паркинсона и других генетических дефектах.

Специфическим, даже патогенетическим, можно считать хирургический метод в лечении иммунодефицитных состояний. Пересадка эмбриональной (для предотвращения реакции отторжения) вилочковой железы (тимуса) при наследственной иммунопатологии в определенной степени восстанавливает иммунореактивность и значительно улучшает состояние пациентов. При некоторых наследственных болезнях, сопровождающихся дефектами иммуногенеза, производят пересадку костного мозга (синдром Вискотта-Олдрича) или удаление вилочковой железы (аутоиммунные нарушения).

Таким образом, хирургический метод лечения наследственных аномалий и пороков развития сохраняет свое значение как специфический метод.

ДИЕТОТЕРАПИЯ

Диетотерапия (лечебное питание) при многих наследственных болезнях обмена веществ является единственным патогенетическим и весьма успешным методом лечения, а в некоторых случаях и методом профилактики. Последнее обстоятельство тем более важно, что лишь немногие наследственные нарушения обмена веществ (например, дефицит кишечной лактазы) развиваются у взрослых людей. Обычно заболевание проявляется или в первые часы (муковисцидоз, галактоземия, синдром Криглера - Найяра), или в первые недели (фенилкетонурия, агаммаглобулинемия и др.) жизни ребенка, приводя более или менее быстро к печальным последствиям вплоть до смерти.

Простота основного лечебного мероприятия - устранение из пищевого рациона некоего фактора - остается чрезвычайно заманчивой. Однако хотя ни при каких других заболеваниях диетотерапия не выступает самостоятельным и столь эффективным методом лечения [Анненков Г. А., 1975], она требует строгого соблюдения ряда условий и ясного понимания всей сложности получения желаемого результата. Эти условия, по Ю. Е. Вельтищеву (1972), заключаются в следующем: "Точный ранний диагноз аномалии обмена, исключающий ошибки, связанные с существованием фенотипически сходных синдромов; соблюдение гомеостатического принципа лечения, под которым понимается максимальная адаптация диеты к требованиям растущего организма; тщательный клинический и биохимический контроль за проведением диетотерапии".

Рассмотрим это на примере одного из самых распространенных врожденных нарушений обмена веществ - фенилкетонурии (ФКУ). Эта аутосомно-рецессивная наследственная болезнь встречается в среднем с частотой 1:7000. При ФКУ мутация гена приводит к недостаточности фенилаланин-4-гидроксилазы, в связи с чем фенилаланин, поступая в организм, превращается не в тирозин, а в аномальные продукты метаболизма - фенил-пировиноградную кислоту, фенилэтиламин и т.д. Эти производные фенилаланина, взаимодействуя с мембранами клеток центральной нервной системы, припятствуют проникновению в них триптофана, без которого невозможен синтез многих белков. В результате довольно быстро развиваются необратимые психические и неврологические нарушения. Заболевание развивается с началом вскармливания, когда в организм начинает поступать фенилаланин. Лечение заключается в полном удалении фенилаланина из пищевого рациона, т. е. во вскармливании ребенка специальными белковыми гидролизатами. Однако фенилаланин относится к незаменимым, т.е. не синтезируемым в организме человека, аминокислотам и должен поступать в организм в количествах, необходимых для относительно нормального физического развития ребенка. Итак, не допустить, с одной стороны, умственной, а с другой - физической неполноценности - одна из основных сложностей лечения фенилкетонурии, как, впрочем, и некоторых других наследственных "ошибок" метаболизма. Соблюдение принципа гомеостатичности диетотерапии при ФКУ представляет собой довольно сложную задачу. Содержание фенилаланина в пище должно составлять не более 21 % возрастной физиологической нормы, что предупреждает как патологические проявления болезни, так и нарушения физического развития [Бараш-нева С. М., Рыбакова Е. П., 1977]. Современные пищевые рационы для больных ФКУ позволяют дозировать поступление фенилаланина в организм в точном соответствии с его концентрацией в крови по данным биохимического анализа. Ранняя диагностика и незамедлительное назначение диетотерапии (в первые 2-3 мес жизни) обеспечивают нормальное развитие ребенка. Успехи лечения, начатого позже, значительно скромнее: в сроки от 3 мес до года - 26 %, от года до 3 лет - 15 % удовлетворительных результатов [Ладодо К. С., Барашнева С. М., 1978]. Следовательно, своевременность начала диетотерапии - залог ее эффективности в профилактике проявления и лечения этой патологии. Врач обязан заподозрить врожденное нарушение обмена веществ и провести биохимическое исследование, если у ребенка плохо прибавляется масса тела, наблюдаются рвота, патологические "знаки" со стороны нервной системы, отягощен семейный анамнез (ранняя смерть, умственная отсталость) [Вулович Д. и др., 1975].

Коррекция обменных нарушений путем соответствующей специфической терапии разработана для многих наследственных болезней (табл. 8). Однако раскрытие биохимических основ все новых метаболических блоков требует как адекватных методов диетотерапии, так и оптимизации существующих пищевых рационов. Большую работу в этом направлении проводит Институт педиатрии и детской хирургии М3 РСФСР совместно с Институтом питания АМН СССР.

Таблица 8. Результаты диетотерапии при некоторых наследственных болезнях обмена [по Г. А. Анненкову, 1975)
Болезнь Дефектный фермент Диета Эффективность лечения
Фенилкетонурия Фенилаланин-4-гидроксилаза (комплекс трех ферментов и двух кофакторов) Ограничение фенилаланина Хорошая, если лечение начато в первые 2 мес жизни
Болезнь "мочи с запахом кленового сиропа" Декарбоксилазы боковых цепей кетокислот Ограничение лейцина, изолейцина, валина Удовлетворительная, если лечение начато в неонатальном периоде
Гомоцистинурия Цистатионинсинтаза Ограничение метионина, добавление цистина, пиридоксина Прекрасные результаты, если лечение начато до клинических проявлений заболевания
Гистидинемия Гистидиндезаминаза Ограничение гистидина Еще неясна
Тирозинемия n-Гидроксифенил-пируват - оксидаза Ограничение тирозина и фенилаланина То же
Цистиноз Возможно, лизосомная цистинредуктаза либо белки мембранного транспорта, выводящие цистин из лизосом Ограничение метионина и цистина (один из видов терапии) То же
Глицинемия (некоторые формы) Ферментные цепочки превращения пропионата в сукцинат; серин-гидроксиметил-трансфераза Ограничение белка (особенно богатого глицином и серином) Хорошая
Болезни нарушения цикла мочевины (некоторые формы) Орнитин- карбамоил- трансфераза, карбамоил- фосфатсинтаза, аргининосукцинат- синтетаза Ограничение белка Частичная
Галактоземия Галактозо-1-фосфат-уридил-трансфераза Безгалактозная Хорошая, если лечение начато в неонатальном периоде
Непереносимость фруктозы Фосфофруктокиназа Бесфруктозная Хорошая, если лечение начато в раннем детстве
Нарушение всасывания ди- и моносахаридов Кишечные сахараза, лактаза; дефект транспортных белков в клетках стенки кишечника Исключение соответствующих ди- и моносахаридов Хорошая
Метилмалоновая ацидемия и кетонная глицинемия Изомераза 1-метилмалоновой кислоты Ограничение лейцина, изолейцина, валина, метионина, треонина Хорошая
Гликогенез Кори тип I Глюкозо-6-фосфатаза Ограничение углеводов Частичная
Гликогенез Кори тип V Мышечная фосфорилаза Дополнительное введение глюкозы или фруктозы Положительный эффект
Гиперлипидемии, гиперхолестеринемии - Низкое содержание насыщенных жирных кислот, увеличение ненасыщенных Некоторый положительный эффект, но опыт недостаточен
Болезнь Рефсума (церебротендинальный ксантоматоз) - Безрастительная диета Успешное

Рассмотренные методы лечения наследственных болезней в силу установленной этиологии или патогенетических звеньев можно считать специфическими. Однако для абсолютного большинства видов наследственной патологии мы пока не располагаем методами специфической терапии. Это относится, например, к хромосомным синдромам, хотя их этиологические факторы хорошо известны, или к таким болезням с наследственным предрасположением, как атеросклероз и гипертония, хотя отдельные механизмы развития этих заболеваний более или менее изучены. Лечение тех и других оказывается не специфическим, а симптоматическим. Скажем, основная цель терапии при хромосомных нарушениях - коррекция таких фенотипических проявлений, как умственная отсталость, замедленный рост, недостаточная феминизация или маскулинизация, недоразвитие гонад, специфический внешний вид. С этой целью применяют анаболические гормоны, андрогены и эстрогены, гормоны гипофиза и щитовидной железы в комплексе с другими методами медикаментозного воздействия. Однако эффективность лечения, к сожалению, оставляет желать лучшего.

Несмотря на отсутствие достоверных представлений об этиологических факторах мультифакториальных болезней, их лечение с помощью современных медикаментозных средств дает неплохие результаты. Не устраняя причины болезни, врач вынужден постоянно проводить поддерживающую терапию, что является серьезным недостатком. Однако упорный труд сотен лабораторий, изучающих наследственную патологию и методы борьбы с ней, приведет, безусловно, к важным результатам. Фатальность наследственных болезней существует только до тех пор, пока их причины и патогенез не изучены.

ЭФФЕКТИВНОСТЬ ЛЕЧЕНИЯ МУЛЬТИФАКТОРИАЛЬНЫХ БОЛЕЗНЕЙ
В ЗАВИСИМОСТИ ОТ СТЕПЕНИ НАСЛЕДСТВЕННОГО ОТЯГОЩЕНИЯ У БОЛЬНЫХ

Основной задачей клинической генетики становится в настоящее время изучение влияния генетических факторов не только на полиморфизм клинических проявлений, но и на эффективность лечения распространенных мультифакториальных болезней. Выше отмечалось, что этиология этой группы болезней сочетает как генетические, так и средовые факторы, особенности взаимодействия которых обеспечивают реализацию наследственного предрасположения или препятствуют его проявлению. Еще раз кратко напомним, что мультифакториальные болезни характеризуются общими чертами:

  1. высокой частотой среди населения;
  2. широким клиническим полиморфизмом (от скрытых субклинических до резко выраженных проявлений);
  3. значительными возрастными и половыми отличиями в частоте отдельных форм;
  4. сходством клинических проявлений у больного и его ближайших родственников;
  5. зависимостью риска заболевания для здоровых родственников от общей частоты болезни, числа больных родственников в семье, от тяжести течения заболевания у больного родственника и т. д.

Однако сказанное не затрагивает особенности лечения мультифакториальной патологии в зависимости от факторов наследственной конституции организма человека. Между тем клинико-генетический полиморфизм болезни должен сопровождаться большим различием в эффективности лечения, что и наблюдается на практике. Иначе говоря, можно выдвинуть положение о связи эффекта лечения того или иного заболевания со степенью отягощения у конкретного больного соответствующим наследственным предрасположением. Детализируя это положение, мы впервые сформулировали [Лильин Е. Т., Островская А. А., 1988], что на его основе можно ожидать:

  1. значительную вариабельность результатов лечения;
  2. выраженные различия в эффективности различных терапевтических приемов в зависимости от возраста и пола больных;
  3. сходство лечебного эффекта одних и тех же препаратов у больного и его родственников;
  4. отсроченный лечебный эффект (при одинаковой тяжести болезни) у больных с большей степенью наследственного отягощения.

Все перечисленные положения могут быть изучены и доказаны на примерах разнообразных мультифакториальных болезней. Однако, поскольку все они логически вытекают из основной вероятной зависимости - тяжести процесса и эффективности лечения его, с одной стороны, со степенью наследственного отягощения, с другой, - то именно эта связь нуждается в строго верифицированном доказательстве на соответствующей модели. Эта модель заболевания должна удовлетворять, в свою очередь, следующим условиям:

  1. четкая стадийность в клинической картине;
  2. относительно простая диагностика;
  3. проведение лечения в основном по единой схеме;
  4. простота регистрации терапевтического эффекта.

Моделью, достаточно удовлетворяющей поставленным условиям, является хронический алкоголизм, мультифакториальный характер этиологии которого в настоящее время не подвергается сомнению. Вместе с тем наличие синдрома похмелья и запоев достоверно свидетельствует о переходе процесса во II (основную) стадию заболевания, снижение толерантности - о переходе в III стадию. Оценка терапевтического эффекта по длительности ремиссии после проведенной терапии также относительно проста. Наконец, принятая в нашей стране единая схема лечения хронического алкоголизма (аверсионная терапия путем чередования курсов) применяется в большинстве стационаров. Поэтому для дальнейшего анализа мы изучили связь между степенью наследственного отягощения по хроническому алкоголизму, тяжестью его течения и эффективностью лечения в группах лиц с одинаковым возрастом начала заболевания.

По степени наследственного отягощения все больные (1111 мужчин в возрасте от 18 до 50 лет) были разделены на 6 групп: 1-я - лица, не имеющие родственников, страдающих хроническим алкоголизмом или другими психическими заболеваниями (105 человек); 2-я - лица, имеющие родственников I и II степени родства, страдающих психическими заболеваниями (55 человек); 3-я - лица, имеющие больных алкоголизмом родственников II степени родства (дедушки, бабушки, тети, дяди, двоюродные сибсы) (57 человек); 4-я - лица, имеющие отца, страдающего хроническим алкоголизмом (817 человек); 5-я - лица, имеющие мать, страдающую хроническим алкоголизмом (46 человек); 6-я - лица, имеющие обоих больных родителей (31 человек). Тяжесть течения процесса характеризовали по возрасту пациента на момент перехода из одной фазы в другую, а также по длительности временных промежутков между отдельными фазами процесса. Эффективность лечения оценивали по максимальной ремиссии за время течения процесса.
Таблица 9. Средний возраст (годы) возникновения клинических проявлений хронического алкоголизма в группах больных с различной степенью наследственного отягощения
Симптом Группа
1-я 2-я 3-я 4-я 5-я 6-я
Первая алкоголизация 17,1±0,5 16,6±1,0 16,0±1,2 15,8±0,3 15,4±1,0 14,7±1,2
Начало эпизодического пьянства 20,6±1,0 20,1±1,21 19,8±1,5 19,6±0,5 18,7±1,6 18,3±1,5
Начало систематического пьянства 31,5±1,6 26,3±1,9 25,7±2,0 24,6±0,5 23,8±2,1 23,9±2,8
Возникновение синдрома похмелья 36,2±1,2 29,5±2,0 29,3±2,0 28,1±0,5 27,7±2,1 26,3±2,8
Постановка на учет и начало лечения 41,0±1,3 32,7±2,2 34,1±2,1 33,0±0,9 31,8±2,3 30,0±2,8
Развитие алкогольного психоза 41,3±12,5 32,2±6,9 33,5±1,8 28,6±6,6

Анализ данных табл. 9 показывает, что средний возраст первой алкоголизации достоверно отличается в группах с различной степенью наследственного отягощения. Чем выше степень отягощения, тем раньше начинается алкоголизация. Естественно предположить, что средний возраст на момент возникновения всех остальных симптомов тоже будет различен. Представленные ниже результаты подтверждают это. Однако разница, например, между больными двух крайних групп по среднему возрасту первой алкоголизации и началу эпизодического пьянства составляет 2,5 года, тогда как разница между ними по среднему возрасту начала систематического пьянства равна 7 годам, по среднему возрасту возникновения синдрома похмелья - 10 лет, а по среднему возрасту возникновения психоза - 13 лет. Промежутки между началом эпизодического пьянства и переходом к систематическому, длительность систематического пьянства до возникновения синдрома похмелья и алкогольных психозов тем короче, чем выше степень наследственного отягощения. Следовательно, формирование и динамика данных симптомов находятся под генетическим контролем. Этого нельзя сказать о средней длительности интервала от первой алкоголизации до начала эпизодического употребления алкоголя (во всех группах он равен 3,5 года) и средней длительности интервала от формирования синдрома похмелья до постановки больного на учет (во всех группах равен 4 годам), которые, естественно, зависят исключительно от факторов среды.

Переходя к результатам исследования связи эффективности лечения хронического алкоголизма со степенью наследственного отягощения больных, отметим, что у больных наблюдалась достоверная тенденция к уменьшению продолжительности ремиссии при большей степени отягощения. Разница в двух крайних группах (без наследственного отягощения и с максимальным отягощением) составляет 7 мес (соответственно 23 и 16 мес). Следовательно, эффективность проводимых терапевтических мероприятий также связана не только с социальным, но и с биологическими факторами, детерминирующими патологический процесс.

Таблица 10. Прямой анализ наследственных болезней с использованием генных проб для выявления внутригенного дефекта
Болезнь Проба
Недостаточность α 1 -антитрипсина Синтетический олигонуклеотидный α 1 -антитрипсин
Гиперплазия надпочечников Стероид-21 -гидроксилаза
Амилоидная нейропатия (аутосомно-доминантная) Преальбумин
Недостаточность антитромбина III Антитромбин III
Недостаточность хорионического соматомаммотропина Хорионический соматомаммотропин
Хронический гранулематоз (ХГ) "Кандидат" в гены ХГ
Наследственный эллиптоцитоз Протеин 4.1
Недостаточность гормона роста Гормон роста
Идиопатический гемохроматоз HLA - DR - бета
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Болезнь тяжелых цепей Тяжелые цепи иммуноглобулина
Наследственная персистенция фетального гемоглобина γ-глобулин
Гиперхолестеринемия
Дефицит тяжелых цецей иммуноглобулина Тяжелые цепи иммуноглобулина
Т-клеточный лейкоз Т-клеточные рецепторы, альфа-, бета- и гамма-цепей
Лимфомы Тяжелые цепи иммуноглобулинов
Про-α 2 (I) коллаген, про-α 1 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Порфирия Уропорфириноген-декарбоксилаза
Болезнь Зандхоффа, инфантильная форма β-Гексозоаминидаза
Тяжелый комбинированный иммунодефицит Аденозиндезаминидаза
Альфа-талассемия β-Глобулин, ε-глобин
Бета-талассемия β-Глобин
Тирозинемия II Тирозинаминотрансфераза
Таблица 11. Анализ делеций хромосом и анеуплодии при заболеваниях по данным клонирования генов и ДНК проб
Болезнь Проба
Аниридия Каталаза
Синдром Бекуита - Видемана Инсулин, инсулиноподобный фактор роста
Синдром кошачьего глаза ДНК-сегмент хромосомы 22
Хориодермия DXY I
ДНК-сегменты хромосомы X
Синдром Клайнфелтера ДНК-сегменты хромосомы X
Болезнь Норри DXS 7 (1.28)
Синдром Прадера-Вилли ДНК-сегменты хромосомы 15
Ретинобластома ДНК-сегменты хромосомы 13
Опухоль Вильмса (аниридия) β-субъединица фолликулостимулирующего гормона
Делеция Yp- ДНК-сегменты хромосомы Y
Делеция 5р- ДНК-сегменты хромосомы 5
Синдром 5q- C-fms
Фактор, стимулирующий гранулоциты - макрофаги
Синдром 20q- c-src
Синдром 18р- Альфоидная последовательность хромосомы 18
Таблица 12. Непрямой анализ наследственных болезней с помощью тесно сцепленных полиморфных фрагментов ДНК
Болезнь Проба
Недостаточность α 1 -антитрипсина, эмфизема α 1 -антитрипсин
Синдром Элерса-Данлоса IV типа α 3 (I) коллаген
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Синдром Леша - Нихена Гипоксантин-гуанинфосфорибозил-трансфераза
Гиперлипидемия Апо-липопротеиду С2
Синдром Марфана α 2 (I) коллаген
Недостаточность орнитин-карбамоилтрансферазы Орнитинтранскарбамилаза
Несовершенный остеогенез I типа α 1 (I) коллаген, α 2 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Таблица 13. Непрямой анализ наследственных болезней с использованием сцепленных сегментов ДНК для изучения совместно наследующихся полиморфизмов ДНК
Болезнь Проба
Поликистоз почек взрослого типа HVR-область 3 до α-глобина
Агаммаглобулинемия р 19-2 (DXS3); S21 (DXS1) сегменты ДНК хромосомы X
Наследственный нефрит Альпорта DXS 17
Ангидротическая эктодермальная дисплазия рТАК8
Болезнь Шарко-Мари-Тута X-сцепленная доминантная DXYS1
Хориодермия DXYS1, DXS11; DXYS 1; DXYS12
Хронический гранулематоз 754 (DXS84); PERT 84 (DXS 164)
Кистозный фиброз Про-α 2 (I) коллаген, 7С22 (7; 18) p/311 (D7S18), С-met S8
Мышечные дистрофии Дюшенна и Беккера PERT 87 (DXS1, 164), разные
Врожденный дискератоз DXS 52, фактор VIII, DXS15
Мышечная дистрофия Эмери-Дрейфуса DXS 15, фактор VIII
Синдром умственной отсталости с ломкой хромосомой X Фактор IX, St14 (DXS 52)
Гемофилия А S14, DX 13 (DXS 52, DXS 15)
Хорея Гентингтона CD8 (D4S10)
Недостаточность 21-гидроксилазы HLA класса I и II
Гиперхолестеринемия Рецептор липопротеида низкой плотности
Гипогидротическая эктодермальная дисплазия DXYS1, 58-1 (DXS 14), 19-2 (DXS3)
Гипофосфатемия доминантная DXS41, DXS43
Синдром Хантера DX13 (DXS 15), разные
Ихтиоз Х-сцепленный DXS 143
Болезнь Кеннеди DXYS 1
Миотоническая дистрофия Сегменты ДНК хромосомы 19 D19 S19; апо-липопротеину С2
Нейрофиброматоз Минисателлитная
Нейропатия Х-сцепленная DXYSl, DXS14 (р58-1)
Пигментный ретинит DXS7 (L 1.28)
Спастическая параплегия DX13 (DXS15); S/14 (DXS52)
Спиноцеребральная атаксия Сегменты ДНК хромосомы 6
Болезнь Вильсона D13S4, D13S10

Таким образом, полученные результаты позволяют сделать вывод о существовании реальной связи между тяжестью течения и эффективностью лечения хронического алкоголизма со степенью наследственного отягощения. Следовательно, анализ наследственного отягощения и его ориентировочная оценка по приведенной в главе 2 схеме должны оказать семейному врачу помощь в выборе оптимальной тактики лечения и прогнозе течения различных мультифакториальных болезней по мере накопления соответствующих данных.

РАЗРАБАТЫВАЕМЫЕ МЕТОДЫ ЛЕЧЕНИЯ

Рассмотрим возможности методов лечения, которые еще не вышли из стен лабораторий и находятся на той или иной стадии экспериментальной проверки.

Анализируя выше принципы заместительной терапии, мы упоминали о том, что распространение этого метода борьбы с наследственной патологией ограничено из-за невозможности целенаправленной доставки необходимого биохимического субстрата к органам, тканям или к клеткам-мишеням. Как и любой чужеродный белок, вводимые "лекарственные" ферменты вызывают иммунологическую реакцию, ведущую, в частности, к инактивации фермента. В связи с этим пытались вводить ферменты под защитой неких искусственных синтетических образований (микрокапсул), что особого успеха не имело. Между тем защита молекулы белка от окружающей среды с помощью искусственной или естественной мембраны остается на повестке дня. С этой целью в последние годы исследуют липосомы - искусственно созданные липидные частицы, состоящие из каркаса (матрикса) и липидной (т. е. не вызывающей иммунологических реакций) мембраны-оболочки. Матрикс можно заполнить любым биополимерным соединением, например, ферментом, который будет хорошо защищен от контакта с иммунокомпетентными клетками организма внешней мембраной. После введения в организм липосомы проникают внутрь клеток, где под действием эндогенных липаз оболочка липосом разрушается и содержащийся в них фермент, структурно и функционально не поврежденный, вступает в соответствующую реакцию. Той же цели - транспорту и пролонгации действия необходимого клеткам белка - посвящены и эксперименты с так называемыми эритроцитными тенями: инкубируют эритроциты больного в гипотонической среде с добавлением белка, предназначенного для транспорта. Далее восстанавливают изотоничность среды, после чего часть эритроцитов будет содержать белок, присутствующий в среде. Нагруженные белком эритроциты вводят в организм, где происходит его доставка органам и тканям с одновременной защитой.

Среди иных разрабатываемых методов лечения наследственных болезней особое внимание не только медицинской, но и широкой общественности привлекает генная инженерия. Речь идет о непосредственном влиянии на мутантный ген, о его исправлении. Путем бирпсии тканей или взятия крови можно получить клетки больного, в которых при культивировании можно заменить или исправить мутантный ген, а затем аутоимплантировать (что исключило бы иммунологические реакции) эти клетки в организм больного. Такое восстановление утраченной функции генома возможно с помощью трансдукции - захвата и переноса вирусами (фагами) части генома (ДНК) здоровой клетки-донора в пораженную клетку-реципиент, где этот участок генома начинает нормально функционировать. Возможность такого исправления генетической информации in vitro с последующим внесением ее в организм была доказана в ряде экспериментов, что и обусловило исключительный интерес к генной инженерии.

В настоящее время, как отмечает В. Н. Калинин (1987), вырисовывается два подхода к исправлению наследственного материала, основанные на генно-инженерных представлениях. Согласно первому из них (генотерапия), от больного может быть получен клон клеток, в геном которых вводится фрагмент ДНК, содержащий нормальный аллель мутантного гена. После аутотрансплантации можно ожидать выработки в организме нормального фермента и, следовательно, ликвидации патологической симптоматики болезни. Второй подход (генохирургия) связан с принципиальной возможностью извлечения оплодотворенной яйцеклетки из материнского организма и замены в ее ядре аномального гена на клонированный "здоровый". В этом случае после аутоимплантации яйцеклетки развивается плод, не только практически здоровый, но и лишенный возможности передачи патологической наследственности в дальнейшем.

Однако перспективы использования генной инженерии для лечения наследственных болезней обмена веществ оказываются весьма отдаленными, как только мы рассмотрим некоторые из возникающих проблем. Перечислим проблемы, не требующие специальных генетических и биохимических знаний [Анненков Г. А., 1975], решение которых пока остается делом будущего.

Введение "здоровой" ДНК в клетку-реципиент без одновременного удаления "поврежденного" гена или участка ДНК будет означать увеличение содержания ДНК в этой клетке, т. е. ее избыток. Между тем избыток ДНК ведет к хромосомным болезням. Не скажется ли избыток ДНК на функционировании генома в целом? Кроме того, некоторые генетические дефекты реализуются не на клеточном, а на организменном уровне, т. е. при условии центральной регуляции. В этом случае успехи генной инженерии, достигнутые в опытах на изолированной культуре, могут не сохраниться при "возвращении" клеток в организм. Отсутствие методов точного контроля за мерой вносимой генетической информации может привести к "передозировке" конкретного гена и вызвать дефект с обратным знаком: например, лишний ген инсулина при диабете приведет к развитию гиперинсули-немии. Вносимый ген должен быть встроен не в любое, а в определенное место хромосомы, в противном случае могут быть нарушены межгенные связи, что скажется на считывании наследственной информации.

Метаболизм клетки с патологической наследственностью приспособлен к атипичным условиям. Стало быть, встроенный "нормальный" ген, а вернее, его продукт - нормальный фермент - может не найти в клетке необходимую метаболическую цепь и ее отдельные составляющие - ферменты и кофакторы, не говоря уже о том, что продукция клеткой нормального, но по сути "чужеродного" белка может вызвать массивные аутоиммунные реакции.

Наконец, в генной инженерии пока не найдено метода, который исправлял бы геном половых клеток; это означает возможность значительного накопления вредных мутаций в будущих поколениях при фенотипически здоровых родителях.

Таковы вкратце основные теоретические возражения против использования генной инженерии для лечения наследственных обменных нарушений. Абсолютное большинство наследственных болезней обмена веществ - результат крайне редких мутаций. Разработка для каждой из этих зачастую уникальных ситуаций соответствующего метода генной инженерии - дело, не только крайне "громоздкое", экономически невыгодное, но и сомнительное с точки зрения времени начала специфического лечения. Для большинства часто встречающихся врожденных "ошибок" метаболизма разработаны методы диетотерапии, дающие при правильном использовании прекрасные результаты. Мы отнюдь не стремимся доказать бесперспективность генной инженерии для лечения наследственных болезней или дискридитировать ее как метод решения многих общебиологических проблем. Сказанное касается прежде всего замечательных успехов генной инженерии в пренатальной диагностике наследственных болезней различного генеза. Основное достоинство при этом состоит в определении конкретного нарушения структуры ДНК, т. е. "обнаружении первичного гена, являющегося причиной заболевания" [Калинин В. Н., 1987].

Принципы ДНК-диагностики относительно просты для понимания. Первая из процедур (блоттинг) заключается в возможности с помощью специфических ферментов - рестрикционных эндонуклеаз - разделить молекулу ДНК на многочисленные фрагменты, каждый из которых может содержать искомый патологический ген. На втором этапе этот ген выявляют с помощью специальных "зондов" ДНК - синтезированных последовательностей нуклеотидов, меченных радиоактивным изотопом. Этот "зондаж" может быть осуществлен различными путями, описанными, в частности, D. Cooper и J. Schmidtke (1986). Для иллюстрации остановимся лишь на одном из них. С помощью генно-инженерных методов синтезируют небольшую (до 20) нормальную последовательность нуклеотидов, перекрывающую место предполагаемой мутации, и метят ее радиоактивным изотопом. Затем эту последовательность пытаются гибридизировать с ДНК, выделенной из клеток конкретного плода (или индивида). Очевидно, что гибридизация произойдет успешно, если тестируемая ДНК содержит нормальный ген; при наличии мутантного гена, т. е. аномальной последовательности нуклеотидов в цепи выделенной ДНК, гибридизация не произойдет. Возможности ДНК-диагностики на современном этапе демонстрируют табл. 10-13, взятые нами из работы D. Cooper и J. Schmidtke (1987).

Таким образом, в ряде вопросов медицинской практики генная инженерия по мере своего развития и совершенствования, безусловно, добьется еще более впечатляющих успехов. Теоретически она остается единственным методом этиологического лечения разнообразных заболеваний человека, в генезе которых тем или иным образом "представлена" наследственность. В борьбе со смертностью и инвалидностью от наследственных болезней нужно использовать все силы и средства медицины.

ПРОФИЛАКТИКА ВРОЖДЕННОЙ ПАТОЛОГИИ У ЖЕНЩИН ИЗ ГРУПП ПОВЫШЕННОГО РИСКА

Проблема борьбы с врожденной патологией человека в связи с ее медицинской и социально-экономической значимостью привлекает исключительно большое внимание специалистов. Продолжающееся увеличение частоты врожденных дефектов (до 6-8 % среди новорожденных, включая умственную отсталость) и прежде всего тех, которые резко снижают жизнеспособность человека и возможность его социальной адаптации, обусловило создание ряда принципиально новых методов профилактики этих расстройств.

Основным путем борьбы с врожденными заболеваниями считаются их дородовая диагностика с помощью специальных дорогостоящих методов и прерывание беременности в случае обнаружения болезни или дефекта. Совершенно очевидно, что, кроме серьезной психической травмы, которая наносится матери, эта работа требует значительных материальных затрат (см. ниже). В настоящее время за рубежом общепризнано, что со всех точек зрения значительно "выгоднее" не столько вовремя диагностировать беременность аномальным плодом, сколько вообще не допустить возникновения такой беременности. С этой целью осуществляется ряд международных программ по профилактике наиболее тяжелых видов врожденных аномалий - так называемых дефектов нервной трубки - отсутствие головного мозга (анэнцефалия), расщепление позвоночника с грыжей спинного мозга (спина бифида) и другие, частота которых в различных регионах мира колеблется от 1 до 8 на 1000 новорожденных. Очень важно подчеркнуть следующее: от 5 до 10 % матерей, родивших таких детей, имеют аномальное потомство от последующей беременности.

В связи с этим основной задачей указанных программ является профилактика именно повторного появления аномальных детей у женщин, уже имевших ребенка с пороками развития в предыдущей беременности. Это достигается путем насыщения организма женщины некоторыми физиологически активными веществами. В частности, проведенные в некоторых странах (Великобритания, ЧССР, ВНР и др.) исследования показали, что прием витаминов (особенно фолиевой кислоты) в различных сочетаниях перед зачатием и в первые 12 нед беременности сокращает частоту повторного рождения детей с дефектами нервной трубки с 5-10 % до 0-1 %

  1. Андреев И. О фавизме и его этиопатогенезе//Современные проблемы физиологии и патологии детского возраста. - М.: Медицина, 1965. - С. 268-272.
  2. Анненков Г. А. Диетотерапия наследственных болезней обмена веществ//Вопр. питания. - 1975. - № 6. - С. 3-9.
  3. Анненков Г. А. Генная инженерия и проблема лечения наследственных болезней человека//Вестн. АМН СССР. - 1976. - № 12. - С. 85-91.
  4. Барашнев Ю. И., Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей. - Л.: Медицина, 1978. - 319 с.
  5. Барашнев Ю. И., Розова И. Н., Семячкина А. Н. Роль витамина Be в лечение детей с наследственной патологией обмена веществ//Вопр. питания. - 1979. - № 4. - С. 32-40.
  6. Барашнев Ю. И., Руссу Г. С., Казанцева Л. 3. Дифференциальный диагноз врожденных и наследственных заболеваний у детей. - Кишинев: Штиинца, 1984. - 214 с,
  7. Барашнева С. М., Рыбакова Е. П. Практический опыт организации и применения диетического лечения при наследственных энзимопатиях у детей//Педиатрия. - 1977. - № 7. - С. 59-63.
  8. Бочков Н. П. Генетика человека. - М.: Медицина, 1979. - 382 с.
  9. Бочков Н. П., Лильин Е. Т., Мартынова Р. П. Близнецовый метод//БМЭ. - 1976. - Т. 3. - С. 244-247.
  10. Бочков Н. П., Захаров А. Ф., Иванов В. П. Медицинская генетика.- М.: Медицина, 1984. - 366 с.
  11. Бочков Н. П. Профилактика наследственных болезней//Клин. мед. - 1988. - № 5. - С. 7-15.
  12. Буловская Л. Н., Блинова Н. Н., Симонов Н. И. и др. Фенотипические изменения в ацетилировании у опухолевых больных//Вопр. онкол. - 1978. - Т. 24, № 10. - С. 76-79.
  13. Вельтищев Ю. Е. Современные возможности и некоторые перспективы лечения наследственных болезней у детей//Педиатрия. - 1982. - № П. -С. 8-15.
  14. Вельтищев Ю. E., Каганова С. Ю., Таля В. А. Врожденные и наследственные заболевания легких у детей. - М.: Медицина, 1986. - 250 с.
  15. Генетика и медицина: Итоги XIV Международного генетического конгресса/Под ред. Н. П. Бочкова. - М.: Медицина, 1979.- 190 с.
  16. Гиндилис В. М., Финогенова С. А. Наследуемость характеристик пальцевой и ладонной дерматоглифики человека//Генетика.- 1976. - Т. 12, № 8. - С. 139-159.
  17. Гофман-Кадошников П. Б. Биологические основы медицинской генетики. - М.: Медицина, 1965. - 150 с.
  18. Гринберг К. Н. Фармакогенетика//Журн. Всесоюзн. хим. об-ва. - 1970. - Т. 15, № 6. - С. 675-681.
  19. Давиденков С. Н. Эволюционно-генетические проблемы в невропатологии. - Л., 1947. - 382 с.
  20. Давиденкова Е. Ф., Либерман И. С. Клиническая генетика. - Л.: Медицина, 1975. - 431 с.
  21. Давиденкова Е. Ф., Шварц Е. И., Розеберг О. А. Защита биополимеров искусственными и естественными мембранами в проблеме лечения наследственных заболеваний//Вестн. АМН СССР. - 1978.- № 8. - С. 77-83.
  22. Джавадов Р. Ш. К выявлению фавизма в Азербайджанской ССР// Азерб. мед. журн. - 1966. - № 1. - С. 9-12.
  23. Добровская М. П., Санкина Н. В., Яковлева А. А. Состояние процессов ацетилирования и некоторые показатели липидного обмена при инфекционном неспецифическом артрите у детей//Вопр. охр. мат. - 1967. - Т. 12, № 10. - С. 37-39.
  24. Замотаев И. П. Побочное действие лекарств. - М.: ЦОЛИУВ, 1977. - 28 с.
  25. Заславская Р. М., Золотая Р. Д., Лильин Е. Т. Метод близнецовых исследований "контроля по партнеру" в оценке гемодинамических эффектов нонахлазина//Фармакол. и токсикол. - 1981. - № 3.- С. 357.
  26. Игнатова М. С., Вельтищев Ю. Е. Наследственные и врожденные нефропатии у детей. -Л.: Медицина, 1978. - 255 с.
  27. Идельсон Л. И. Нарушения порфиринового обмена в клинике. - М.: Медицина, 1968. - 183 с.
  28. Кабанов М. М. Реабилитация психически больных. - 2-е изд. - Л.: Медицина, 1985. - 216 с.
  29. Калинин В. Н. Достижения в молекулярной генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 38-48.
  30. Канаев И. И. Близнецы. Очерки по вопросам многоплодия. - М.-Л.: Изд. АН СССР, 1959.- 381 с.
  31. Козлова С. И. Медико-генетическое консультирование и профилактика наследственных болезней//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова. - М.: ВОНЦ, 1987.- С. 17-26.
  32. Кошечкин В. А. Выделение генетических факторов риска ишемической болезни сердца и их использование при диспансеризации//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова.- М.: ВОНЦ, 1987.- С. 103-113.
  33. Краснопольская К. Д. Достижения в биохимической генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 29-38.
  34. Ладодо К. С., Барашнева С. М. Успехи диетотерапии в лечении наследственных заболеваний обмена у детей//Вестн. АМН СССР.- 1978. - № 3. - С. 55-60.
  35. Лильин Е. Т., Мексин В. А., Ванюков М. М. Фармакокинетика сульфалена. Связь между скоростью биотрансформации сульфалена и некоторыми фенотипическими признаками//Хим.-фарм. журн. - 1980. - № 7. - С. 12-16.
  36. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. - М.: Медицина, 1984. - 186 с.
  37. Лильин Е. Т., Островская А. А. Влияние наследственного отягощения на течение и эффективность лечения хронического алкоголиз-ма//Сов. мед. - 1988. - № 4. - С. 20-22.
  38. Медведь Р. И., Луганова И. С. Случай острой гемолитической анемии - фавизма в Ленинградской области//Вопр. гематол. и переливания крови. - 1969. -Т. 14, № 10. - С. 54-57.
  39. Методические рекомендации по организации в Белоруссии медико-генетического обследования детей с хромосомными болезнями. - Минск, 1976. - 21с.
  40. Никитин Ю. П., Лисиченко О. В., Коробкова Е. Н. Клинико-генеалогический метод в медицинской генетике. Новосибирск: Наука, 1983. - 100 с.
  41. Основы цитогенетики человека / Под ред. А. А. Прокофьевой-Бельговской. - М.: Медицина, 1969. - 544 с.
  42. Покровский А. А. Метаболические аспекты фармакологии и токсикологии пищи. - М.: Медицина, 1979. - 183 с.
  43. Спиричев В. Б. Наследственные нарушения обмена и функции витаминов//Педиатрия. - 1975. - № 7. - С. 80-86.
  44. Столин В. В. Самосознание личности. - М.: Изд-во МГУ, 1983. - 284 с.
  45. Таболин В. А., Бадалян Л. О. Наследственные болезни у детей. - М.: Медицина, 1971. - 210 с.
  46. Фармакогенетика. Серия технических докладов ВОЗ, № 524. - Женева, 1975. - 52 с.
  47. Холодов Л. Е., Лильин Е. Т.. Мексин В. А., Ванюков М. М. Фармакогенетика сульфалена. II Популяционно-генетический аспект//Генетика. - 1979. - Т. 15, № 12. - С. 2210-2214.
  48. Шварц Е. И. Итоги науки и техники. Генетика человека/Под ред. Н. П. Бочкова. - М.: ВИНИТИ АН ССР, 1979.-Т. 4.- С. 164-224.
  49. Эфроимсон В. П., Блюмина М. Г. Генетика олигофрений, психозов, эпилепсий. - М.: Медицина, 1978. - 343 с.
  50. Asberg М., Evans D.. Sjogvest F. Genetic control of nortriptiline plasma levels in man: a study of proposit with high plasma concentration//J. med. Genet.- 1971. - Vol. 8. - P. 129-135.
  51. Beadl J., Tatum T. Genetic control of biochemical reactions in neurospora//Proc. Nat. Acad. Sci. - 1941, - Vol. 27. - P. 499-506.
  52. Bourne J., Collier H.. Somers G. Succinylcholine muscle relaxant of short action//Lancet.- 1952. - Vol. 1. - P. 1225-1226.
  53. Conen P., Erkman B. Frequency and occurrence of chromosomal syndromes D-trisomy//Amer. J. hum. Genet. - 1966. - Vol. 18. - P. 374-376.
  54. Cooper D., Schmidtke Y. Diagnosis of genetic disease using recombinant DNA//Hum. genet. - 1987. - Vol. 77. - P. 66-75.
  55. Costa Т., Seriver C.. Clulds B. The effect of mendelian disease on human health: a measurement//Amer. J. med. Genet. - 1985. - Vol. 21. - P. 231-242.
  56. Drayer D., Reidenberg M. Clinical consequences of polymorphic acety-lation of basic drugs//Clin. Pharmacol. Ther.- 1977. - Vol. 22, N. 3. - P. 251-253.
  57. Evans D. An improved and simplified method of detecting the acetylator phenotype//J. med. Genet.- 1969. - Vol. 6, N 4. - P. 405-407.
  58. Falconer D. S. Introduction to quantitative genetics. - London: Oliver and Boyd, 1960. - 210 p.
  59. Ford С. E., Hamarton J. L. The chromosomes of man//Acta genet, et statistic, med. - 1956. - Vol. 6, N 2. - P. 264.
  60. Garrod A. E. Inborn errors of metabolism (Croonian Lectures)//Lancet. - 1908. - Vol. 1, N 72. - P. 142-214.
  61. Jacobs P. A., Baikie A. J. Court Brown W. M. et al. Evidence of existence of human "superfemale"//Lancet. - 1959. - Vol. 2. - P. 423.
  62. Kaousdian S., Fabsetr R. Hereditability of clinical chemistries in an older twin//J. Epidemiol. - 1987. - Vol. 4, N 1, -P. 1 - 11.
  63. Karon М., Imach D., Schwartz A. Affective phototherapy in congenital nonobstructive, nonhemolytic jaundice//New Engl. J. Med. - 1970. - Vol. 282. - P. 377-379.
  64. Lejeune J., Lafourcade J., Berger R. et al. Trios cas de deletion du bras court d’une chromosome 5//C. R. Acad. Sci.- 1963. - Vol. 257.- P. 3098-3102.
  65. Mitchcel J. R., Thorgeirsson U. P., Black М., Timbretl J. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize//Clin. Pharmacol. Ther. - 1975. - Vol. 18, N 1. - P. 70-79.
  66. Mitchell R. S., Relmensnider D., Harsch J., Bell J. New information on the clinical implication of individual variation in the metabolic handing of antituberculosis drug, particularly isoniazid//Transactions of Conference of the Chemotherapy of Tuberculosis. - Washington: Veter. Administ., 1958.- Vol. 17.- P. 77-81.
  67. Moore К. L., Barr M. L. Nuclear morphology, according to sex, in human tissues//Acta anat. - 1954. - Vol. 21. - P. 197-208.
  68. Serre H., Simon L., Claustre J. Les urico-frenateurs dans le traitement de la goutte. A propos de 126 cas//Sem. Hop. (Paris).- 1970.- Vol. 46, N 50. - P. 3295-3301.
  69. Simpson N. E., Kalow W. The "silent" gene for serum cholinesterase//Amer. J. hum. Genet. - 1964. - Vol. 16, N 7. - P. 180-182.
  70. Sunahara S., Urano М., Oqawa M. Genetical and geographic studies on isoniazid inactivation//Science. - 1961. - Vol. 134. - P. 1530- 1531.
  71. Tjio J. H., Leva N. A. The chromosome number of men//Hereditas. - 1956.- Vol. 42, N 1, - P. 6.
  72. Tocachara S. Progressive oral gangrene, probably due to a lack of catalase in the blood (acatalasaemia)//Lancet.- 1952. - Vol. 2.- P. 1101.