Что такое проводник и диэлектрик? Большая энциклопедия нефти и газа

Каждый человек, постоянно пользуясь электроприборами, сталкивается с:

1. проводниками, которые пропускают электрический ток;

2. диэлектриками, обладающими изоляционными свойствами;

3. полупроводниками, сочетающими в себе характеристики первых двух типов веществ и изменяющие их в зависимости от приложенного управляющего сигнала.

Отличительной чертой каждой из перечисленных групп является свойство электропроводности.

Что такое проводник

К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.

Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют или способность любого вещества пропускать через себя электрические заряды - ток.

Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).

1 См=1/1 Ом.

В природе носителями зарядов могут быть:

    электроны;

    ионы;

    дырки.

По этому принципу электропроводность подразделяют на:

    электронную;

    ионную;

    дырочную.

Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин - вольтамперной характеристикой.

Проводники с электронной проводимостью

Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.


Внутри металлов они находятся в двух состояниях:

    связанные силами атомного сцепления;

    свободные.

Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.

Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.

Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами - электрический ток.

Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.


Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:

    сплавы;

    отдельные модификации углерода (графит, уголь).

Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода. У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.

Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.

Проводники с ионной проводимостью

К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода. Это:

    растворы щелочей, кислот солей;

    расплавы различных ионных соединений;

    различные газы и пары́.

Электрический ток в жидкости

Проводящие электрический ток жидкие среды, в которых происходит - перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс - электролизом.


Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного - к катоду.

Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами. В качестве примера можно привести хлорид меди, который в водном растворе распадается на составляющие ионы меди (катионы) и хлора (анионы).

CuCl2꞊Cu2++2Cl-

Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы - к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.

Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.

Вольтамперная характеристика электролитов показана графиком.


Электрический ток в газах

При обычном состоянии среда газов обладает изоляционными свойствами и не проводит ток. Но под воздействием различных возмущающих факторов диэлектрические характеристики могут резко снизиться и спровоцировать прохождение ионизации среды.

Она возникает от бомбардировки нейтральных атомов движущимися электронами. В результате этого из атома выбивается один или несколько связанных электронов, и атом получает положительный заряд, превращаясь в ион. Одновременно внутри газа образуется дополнительное количество электронов, продолжающих процесс ионизации.

Таким образом, внутри газа электрический ток создается одновременным движением положительных и отрицательных частиц.

Искровой разряд

При нагреве или повышении напряженности приложенного электромагнитного поля внутри газа вначале проскакивает искра. По этому принципу образуется природная молния, которая состоит из каналов, пламени и факела разряда.


В лабораторных условиях проскакивание искры можно наблюдать между электродами электроскопа. Практическая же реализация искрового разряда в свечах зажигания двигателей внутреннего сгорания известна каждому взрослому человеку.

Дуговой разряд

Искра характерна тем, что через нее сразу расходуется вся энергия внешнего поля. Если же источник напряжения способен поддерживать протекание тока через газ, то возникает дуга.


Примером электрической дуги является сварка металлов различными способами. Для ее протекания используется эмиссия электронов с поверхности катода.

Коронный разряд

Он возникает внутри газовой среды с большими напряженностями и неоднородными электромагнитными полями, что проявляется на высоковольтных воздушных линиях электропередач с напряжением от 330 кВ и выше.


Он протекает между проводом и близко расположенной плоскостью линии электропередачи. При коронном разряде происходит ионизация методом электронного удара около одного из электродов, обладающего областью повышенной напряженности.

Тлеющий разряд

Его используют внутри газов в специальных разрядных газосветных лампах и трубках, стабилизаторах напряжения. Он образуется за счет понижения давления в разрядном промежутке.


Когда в газах процесс ионизации достигает большой величины и в них образуется равное число положительных и отрицательных носителей зарядов, то такое состояние называют плазмой. Тлеющий разряд происходит в среде плазмы.

Вольтамперная характеристика протекания токов в газах представлена на картинке. Она состоит из участков:

1. несамостоятельного;

2. самостоятельного разряда.

Первый характеризуется тем, что происходит под воздействием внешнего ионизатора и при прекращении его действия затухает. А самостоятельный разряд продолжает течь при любом условии.


Проводники с дырочной проводимостью

К ним относятся:

    германий;

    селен;

    кремний;

    соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.

Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.

В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.


Проводимость у полупроводников бывает:

1. собственной;

2. примесной.

Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.

Второй тип полупроводников создают за счет включения кристаллов с примесной проводимостью. Они обладают атомами трех- или пятивалентного элемента.

При очень низких температурах вещества определенные категории металлов и сплавов переходят в состояние, которое получило название сверхпроводимости. У этих веществ электрическое сопротивление току снижается практически до нулевого значения.

Переход происходит за счет изменения тепловых свойств. По отношению к поглощению или выделению теплоты во время перехода в сверхпроводящее состояние при отсутствии магнитного поля сверхпроводники подразделяют на 2 рода: №1 и №2.


Явление сверхпроводимости проводников происходит за счет образования куперовских пар, когда создается связанное состояние для двух соседних электронов. У созданной пары образуется двойной заряд электрона.

Распределение электронов в металле при состоянии сверхпроводимости показано графиком.

Магнитная индукция сверхпроводников зависит от напряженности электромагнитного поля, а на величину последней влияет температура вещества.


Свойства сверхпроводимости проводников ограничены критическими значениями предельного магнитного поля и температуры для них.

Таким образом, проводники электрического тока могут быть выполнены из совершенно различных веществ и обладать отличающимися друг от друга характеристиками. На них всегда оказывают влияние условия окружающей среды. По этой причине границы эксплуатационных характеристик проводников всегда оговариваются техническими нормативами.

Из физики известно, что электрический ток – это направленное движение электрически заряженных частиц. Разные вещества проводят электрический ток по-разному. По способности передавать электрические заряды вещества делятся на ПРОВОДНИКИ и НЕПРОВОДНИКИ электричества.

Проводниками называют тела, через которые электрические заряды могут проходить от заряженного тела к незаряженному, в проводниках имеется очень много свободных заряженных частиц. Хорошие проводники электричества – это металлы, почва, вода с растворенными в ней солями, кислотами или щелочами, графит и некоторые виды органических веществ. Тело человека также проводит электричество. Это можно показать на опыте с электроскопом. Зарядим электроскоп с помощью эбонитовой или стеклянной палочки, стрелка отклонится Затем дотронемся до заряженного электроскопа рукой. Стрелка тотчас вернётся в исходное положение – к нулю. Заряд с электроскопа уходит в наше тело. В данном опыте с небольшим зарядом это не опасно, но ощутимо «щёлкает» по пальцам. А большие заряды и токи опасны для жизни и здоровья.

Из металлов лучшие проводники электричества – серебро, медь, алюминий. Даже в обычной водопроводной воде растворено столько всевозможных солей, что она является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности иначе можно получить весьма ощутимый удар током, это опасно.

Проходя через живой организм электрический ток производит разные действия: термическое – ожоги определённых участков тела, нагрев кровеносных сосудов, крови, нервов; электролитическое (или химическое) – разложение крови и других органических жидкостей; биологическое – раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращением мышц, в том числе мышц сердца и лёгких. В результате всего этого могут возникнуть различные нарушения в организме вплоть до полной остановки работы сердца и лёгких.

Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному, так как в диэлектриках очень мало свободных заряженных частиц. Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шелк, капрон, масла, воздух (газы), стекло, плексиглас, сухое дерево и бумага. Изготовленные из диэлектриков тела называются ИЗОЛЯТОРАМИ (от итальянского слова ИЗОЛЯРО – уединять).

Проводники служат для передачи на расстояние электрической энергии (электрического тока), именно из них, в основном, изготавливаются высоковольтные электрические кабели, бытовая электропроводка. Изоляторы используются для обособления, изолирования проводников и обеспечения безопасности людей при работе с электроприборами. Для передачи электроэнергии необходимо собрать замкнутую электрическую цепь, в которую входят источник электрической энергии, проводники, по которым от этого источника электрический ток поступает к потребителям электрической энергии, и сами потребители.

При проведении опытов по электричеству всегда используются и проводники, и диэлектрики. Например, используя два электроскопа, мы зарядили один из них отрицательным зарядом, полученным на эбонитовой палочке при её трении о шерсть. При этом стрелка электроскопа отклонилась, показывая наличие заряда на нём. Если затем взять металлический стержень на изолирующей пластмассовой рукоятке и соединить заряженный электроскоп с незаряженным, то по проводящему ток стержню заряды частично перейдут на второй электроскоп, а вот разрядки электроскопа, как в случае его касания голой рукой, не происходит, так как рукоятка не проводит ток к руке человека. Именно поэтому рукоятки различных инструментов, например отвёрток, плоскогубцев, кусачек, делают из непроводящих материалов.

Основные меры защиты от поражения электрическим током:

Обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения,

Защитное заземление, защитное отключение электроприборов;

Использование по возможности низких напряжений, особенно во влажных помещениях;

Применение двойной изоляции.

Знание и соблюдение правил техники безопасности при работе с электрическим током и различными электроприборами обязательно и для взрослых, и для детей. Чтобы учащимся младших классов было легче запомнить эти правила, можно использовать различные запоминающиеся плакаты, стихи. Примеры я подобрал из различных источников, кое-что придумал сам и оформил как советы по электробезопасности в приложении 1 к моей работе. В приложении 2 приведены меры первой помощи при поражении электрическим током.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЭЛЕКТРОПРОВОДНОСТИ РАЗЛИЧНЫХ ВЕЩЕСТВ

Электропроводность веществ можно испытать с помощью специального прибора, но мы использовали обычную электрическую цепь. Главный элемент любой электрической цепи – источник электрического тока. Без него электрическая цепь не будет работать. Когда вы включаете в розетку вилку питающего шнура телевизора, для электрического утюга, чайников и других электроприборов – потребителей электрической энергии, то вы, по сути, подключаетесь к электростанции – производителю этой электроэнергии.

Для того чтобы проверить электропроводность твердых веществ, я собрал электрическую цепь, в которую входили: источник тока, ключ для замыкания и размыкания цепи, лампа для того, чтобы проверить, есть ток или нет, и контакты для подключения вещества в цепь.

Когда контакты помещают в вещество, становится ясно, проводит ли это вещество ток. Если вещество проводит электрический ток, цепь замыкается, и лампочка загорается. Если вещество неэлектропроводно, цепь остается разомкнутой, и лампочка не горит.

Опыт 1. Исследование твердых веществ.

В таблице 1 указаны десять твердых веществ, которые мы исследовали на электропроводность. В результате проверки выяснилось,

Таблица 1.

алюминий + пластмасса –

сталь + стекло –

латунь + орг. стекло –

медь + магнит –

древесина – резина – что алюминий, сталь, латунь, медь проводят электрический ток, а древесина, пластмасса, стекло, оргстекло, магнит и резина не проводят электрический ток.

Опыт 2. Исследование жидких веществ.

Для того, чтобы проверить электропроводность жидких веществ, мы изменили электрическую цепь (рис. 5). Кроме источника тока и ключа в цепь добавили амперметр вместо лампы и электролитический стакан вместо контактов.

Таблица 2.

чистая вода –

раствор поваренной соли +

раствор медного купороса +

раствор морской соли +

раствор сахара –

В электролитический стакан мы помещали разные жидкости. Если у амперметра при замыкании цепи стрелка отклонялась, значит, данная жидкость проводит электрический ток.

В результате нашего эксперимента выяснилось, что раствор поваренной соли, медного купороса и морской соли проводит электрический ток, а чистая вода и сахарный сироп – нет.

ЗАКЛЮЧЕНИЕ

Проведённые опыты подтвердили, что некоторые вещества хорошо проводят ток, это различные металлы и растворы солей. Другие твёрдые и жидкие вещества являются диэлектриками, т. е. непроводниками, это пластмассы или резина, из которых делают изоляцию электропроводов и корпуса электрических приборов, и многие другие вещества.

Моя работа достаточно важна для меня и других школьников, так как для безопасной работы с электрическими приборами дома и в школе нужно знать, как поступать в некоторых жизненных ситуациях. Например, человека ударило током от оборванного провода. Ни в коем случае нельзя трогать этот провод и человека голыми руками. Нужно отодвинуть провод с помощью какого-то не проводящего ток предмета, например сухой деревянной палки.

Чтобы научить учеников младших классов правилам электробезопасности, можно использовать подготовленные мной советы.

При изучении тепловых явлений говорилось, что по способности проводить теплоту вещества делятся на хорошие и плохие проводники тепла.

По способности передавать электрические заряды вещества также делятся на несколько классов: проводники, полупроводники и непроводники электричества.

    Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.

Хорошие проводники электричества - это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.

а - железо; б - графит

Из металлов лучшие проводники электричества - серебро, медь, алюминий.

    Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.

Непроводниками электричества, или диэлектриками , являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами (от итал. изоляро - уединять).

а - янтарь; б - фарфор

    Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.

В природе полупроводники распространены достаточно широко. Это оксиды и сульфиды металлов, некоторые органические вещества и др. Наибольшее применение в технике нашли германий и кремний.

Полупроводники при низкой температуре не проводят электрический ток и являются диэлектриками. Однако при повышении температуры в полупроводнике начинает резко увеличиваться число носителей электрического заряда, и он становится проводником.

Почему это происходит? У полупроводников, таких как кремний и германий, в узлах кристаллической решётки атомы колеблются около своих положений равновесия, и уже при температуре 20 °С это движение становится настолько интенсивным, что химические связи между соседними атомами могут разорваться. При дальнейшем повышении температуры валентные электроны (электроны, находящиеся на внешней оболочке атома) атомов полупроводников становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток.

Характерной особенностью полупроводников является возрастание их проводимости с повышением температуры. У металлов же при повышении температуры проводимость уменьшается.

Способность полупроводников проводить электрический ток возникает также при воздействии на них света, потока быстрых частиц, введении примесей и др.

а - германий; б- кремний

Изменение электропроводности полупроводников под действием температуры позволило применять их в качестве термометров для замера температуры окружающей среды, широко применяют в технике. С его помощью контролируют и поддерживают температуру на определённом уровне.

Повышение электропроводности вещества под воздействием света носит название фотопроводимость . Основанные на этом явлении приборы называют фотосопротивлениями . Фотосопротивления применяются для сигнализации и в управлении производственными процессами на расстоянии, сортировке изделий. С их помощью в экстренных ситуациях автоматически останавливаются станки и конвейеры, предупреждая несчастные случаи.

Благодаря удивительным свойствам полупроводников, они широко используются при создании транзисторов, тиристоров, полупроводниковых диодов, фоторезисторов и другой сложнейшей аппаратуры. Применение интегральных микросхем в теле-, радио- и компьютерных приборах позволяет создавать устройства небольших, а порой и ничтожно малых размеров.

Вопросы

  1. На какие группы делят вещества по способности передавать электрические заряды?
  2. Какой характерной особенностью обладают полупроводники?
  3. Перечислите области применения полупроводниковых приборов.

Упражнение 22

  1. Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?
  2. Почему стержень электроскопа изготавливают из металла?
  3. К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?

Это любопытно...

Способность тела к электризации определяется наличием свободных зарядов. В полупроводниках концентрация носителей свободного заряда увеличивается с ростом температуры.

Проводимость, которая осуществляется свободными электронами (рис. 43), называется электронной проводимостью полупроводника или проводимостью n-типа (от лат. negativus - отрицательный). При отрыве электронов от атомов германия в местах разрыва образуются свободные места, которые не заняты электронами. Эти вакансии получили название «дырки». В области образования дырки возникает избыточный положительный заряд. Вакантное место может быть занято другим электроном.

Электрон, перемещаясь в полупроводнике, создаёт возможность заполнения одних дырок и образования других. Возникновение новой дырки сопровождается появлением свободного электрона, т. е. идёт непрерывное образование пар электрон - дырка. В свою очередь, заполнение дырок приводит к уменьшению числа свободных электронов. Если кристалл поместить в электрическое поле, то будет происходить перемещение не только электронов, но и дырок. Направление перемещения дырок противоположно направлению движения электронов.

Проводимость, которая возникает в результате перемещения дырок в полупроводнике, называется дырочной проводимостью или проводимостью р-типа (от лат. positivus - положительный). Полупроводники подразделяют на чистые полупроводники, примесные полупроводники n-типа, примесные полупроводники р-типа.

Чистые полупроводники обладают собственной проводимостью. В создании тока участвуют свободные заряды двух типов: отрицательные (электроны) и положительные (дырки). В чистом полупроводнике концентрация свободных электронов и дырок одинакова.

При введении в полупроводник примесей возникает примесная проводимость. Изменяя концентрацию примеси, можно менять и число носителей заряда того или иного знака, т. е. создавать полупроводники с преимущественной концентрацией отрицательного или положительного заряда. Примесные полупроводники n-типа обладают электронной проводимостью. Основными носителями заряда являются электроны, а неосновными - дырки.

Примесные полупроводники р-типа обладают дырочной проводимостью. Основными носителями заряда являются дырки, а неосновными - электроны.

Представляет собой соединение полупроводников р- и л-типа. Сопротивление области контакта зависит от направления тока. Если диод включить в цепь, чтобы область кристалла с электронной проводимостью n-типа была подсоединена к положительному полюсу, а область с дырочной проводимостью р-типа к отрицательному полюсу, то тока в цепи не будет, так как переход электронов из n-области в р-область затрудняется.

Если р-область полупроводника подключить к положительному полюсу, а n-область к отрицательному, то в этом случае ток проходит через диод. За счёт диффузии основных носителей тока в чужой полупроводник в области контакта образуется двойной электрический слой, препятствующий движению зарядов. Внешнее поле, направленное от р к n, частично компенсирует действие этого слоя, и при увеличении напряжения ток быстро возрастает.

Проводниками электрического тока могут быть совсем разные вещества. Например, и кусок металлической проволоки, и морская вода являются электропроводниками. Но электроток в них различен по своей природе. Поэтому они разделены на две группы:

  • первого рода с проводимостью, основанной на электронах;
  • второго рода с проводимостью, основанной на ионах.

Электропроводники первого рода это все металлы и углерод. Представителями второго рода являются кислоты, щёлочи, растворы и расплавы солей, которые называют «электролитами».

  • Ток в проводниках течёт при любых значениях напряжения и прямо пропорционален величине напряжения.

Наилучшими электропроводниками при обычных условиях являются серебро, золото, медь и алюминий. Медь и алюминий наиболее широко используются для изготовления различных проводов и кабелей из-за более низкой цены. Хорошим жидким проводником первого рода является ртуть. Хорошо проводит электрический ток и углерод. Но из-за отсутствия гибкости его применение невозможно. Однако созданная относительно недавно форма углерода графен позволяет изготавливать нити и шнуры из нитей.

Но графеновые шнуры имеют сопротивление, которое для токопроводов является недопустимо большим. Поэтому их используют в электронагревателях. В этом качестве графеновый шнур превосходит металлические проволочные аналоги на основе сплава никеля и хрома, поскольку может обеспечить более высокую температуру. Аналогичным образом используются проволочные электропроводники из вольфрама. Из них изготовлены спирали ламп накаливания и электроды газоразрядных ламп. Вольфрам является самым тугоплавким электропроводником.

Процессы в проводниках

Электрический ток, протекающий в проводнике, оказывает на него определённые воздействия. В любом случае происходит увеличение температуры. Но возможны также и химические реакции, которые приводят к изменению физических и химических свойств. Наибольшим изменениям подвержены электропроводники второго рода. Электрический ток в них вызывает электрохимическую реакцию, называемую электролизом.

В результате ионы проводника второго рода получают вблизи электрических полюсов необходимые заряды и восстанавливаются до состояния, которое было до появления кислоты, щёлочи или соли. Электролиз широко используется для получения многих чистых химических веществ из природного сырья. Способом электролиза расплавов получают чистый алюминий и некоторые другие металлы.

Проводники первого и второго рода могут не только проводить электрический ток при подаче на них внешнего напряжения. При взаимодействии, например свинца с кислотой, то есть проводника первого рода с проводником второго рода, возникает электрохимическая реакция, обеспечивающая выделение электрической энергии. На этом основано устройство аккумуляторов .

Электропроводники первого рода также могут изменяться при контакте друг с другом. Например, контакт медного и алюминиевого проводника является плохим решением без специального покрытия его. Влажности воздуха оказывается достаточно для разрушения в месте контакта электрохимической реакцией. Поэтому рекомендуется защищать подобные соединения лаком или аналогичными веществами.

У некоторых проводников первого рода при значительном охлаждении возникает особое состояние, пребывая в котором они не оказывают электрическому току сопротивление. Это явление называется сверхпроводимостью. Классическая сверхпроводимость соответствует значению температуры, близкой к состоянию жидкого гелия. Однако по мере выполнения исследований обнаружились новые сверхпроводники с более высокими значениями температуры.

  • Экономически оправданное использование сверхпроводимости является одной из приоритетных целей современной энергетики.

Электрический ток может течь не только в проводниках первого и второго рода. Есть ещё полупроводники и газы, которые так же проводят электроток. Но это уже совсем другая история…

Способность проводить электрический ток имеют не только металлы. При некоторых условиях эту способность приобретают тазы и жидкости.

Свойство химического элемента проводить электрический ток или быть диэлектриком (изолятором) зависит от наличия в нем свободных заряженных частиц. В металлах это электрон – частица, вращающаяся вокруг атома. Вместе электроны и атомы составляют молекулу. В молекуле водорода вокруг атома вращается один электрон. У меди их – 39.

Электроны распределяются группами на разном удалении от атомного ядра. Самая дальняя группа электронов у электропроводящих материалов имеет неустойчивую связь с ядром. При появлении электрического поля они приходят в движение и создают электрический ток.

Электрическое поле всегда распространяется со скоростью света. А вот скорость движения электронов очень мала: десятки сантиметров в секунду. Объясняется это столкновениями при движении электронов с элементами кристаллической решетки проводника. Чем больше этих столкновений, тем хуже проводит материал электрический ток.

Удельное сопротивление

Способность лучше или хуже проводить ток определяется удельным сопротивлением — ⍴ (ро). Вот удельные сопротивления некоторых металлов, применяемых в электротехнике.

Удельное сопротивление зависит от температуры. Чем она ниже, тем сопротивление меньше. Объясняется это тем, что с уменьшением температуры электроны меньше совершают хаотичных движений и меньше сталкиваются. При температуре абсолютного нуля (-273˚С) движение прекращается. У большинства материалов при этом способность проводить ток резко исчезает, но у некоторых возникает явление сверхпроводимости , когда удельное сопротивление равно нулю. При этом величина тока в проводнике ничем не ограничивается.

Сопротивление, ток и мощность

Электрическое сопротивление (R) проводника измеряется в Омах и зависит еще и от его геометрических размеров:

S – площадь сечения проводника в м 2 , l – его длина в метрах. Ток через проводник измеряется в амперах и подчиняется закону Ома для участка цепи:

U – напряжение в вольтах. Мощность , выделяющаяся на проводнике под действием электрического тока, равна:

Теперь возьмем одинаковых размеров проводники из разных материалов и будем пропускать через них один и тот же ток. Как видно из формул, чем больше у проводника удельное сопротивление, тем большая мощность выделится на нем при прохождении электрического тока.

Вот поэтому для одного и того же тока сечение алюминиевого кабеля нужно больше, чем медного. Медный нагреется до температуры, при которой расплавится изоляция, при большем токе.

Применение нихрома для изготовления нагревательных элементов объясняется его высоким удельным сопротивлением и стойкостью к расплавлению. Тугоплавкость и повышенное удельное сопротивление позволили использовать вольфрам для изготовления нитей накала электроламп.

Золото проводит ток чуть лучше алюминия, но применяется в электронике только из-за того, что не образует окислов.

Направление электрического тока

В зависимости от характера движения зарядов электрический ток разделяется на:

  • постоянный , когда движение происходит в одном направлении;
  • переменный , когда направление движения постоянно меняется.

В наших сетях ток – переменный, частотой 50 Гц. Он 100 раз в секунду изменяет направление движения на противоположное. Переменный ток имеет преимущество перед постоянным: величину напряжения можно изменять при помощи несложных устройств – трансформаторов.

Постоянный ток может быть получен из переменного и наоборот.

И напоследок – интересный казус. В электротехнике принято считать за направление постоянного тока направление движения положительных зарядов – от плюса к минусу. На самом же деле движутся отрицательно заряженные частицы – электроны. Дело в том, что ученые приняли такое направление до открытия электрона, и оно сохранилось до сих пор.