Что делают нейроны. Что такое нейроны? Строение и функции нейронов. Жизненный опыт повышает эффективность работы синапса

О неисчерпаемых возможностях нашего написаны горы литературы. Он способен перерабатывать огромное количество информации, которое не под силу даже современным компьютерам. Более того, мозг в нормальных условиях работает без перебоев в течение 70-80 и более лет. И с каждым годом продолжительность его жизни, а значит, и жизни человека все увеличивается.

Эффективную работу этого важнейшего и во многом таинственного органа обеспечивают в основном два вида клеток: нейроны и глиальные. Именно нейроны отвечают за получение и обработку информации, и .

Часто можно слышать, что умственные человека гарантирует наличие серого вещества. Что это за вещество и почему оно серое? Такой цвет имеет кора головного мозга, состоящая из микроскопических клеток. Это нейроны или нервные клетки, которые обеспечивают работу нашего мозга и управление всем организмом человека.

Как устроена нервная клетка

Нейрон, как и любая живая клетка, состоит из ядра и клеточного тела, которое называют сома. Размер самой клетки микроскопический – от 3 до 100 мкм. Однако это не мешает нейрону быть настоящим хранилищем разнообразной информации. Каждая нервная клетка содержит в себе полный набор генов – инструкций по производству белков. Одни из белков участвуют в передаче информации, другие создают защитную оболочку вокруг самой клетки, третьи участвуют в процессах памяти, четвертые обеспечивают смену настроения и т. д.

Даже небольшой сбой в одной из программ по производству какого-то белка может привести к тяжелым последствиям, заболеванию, нарушению психической деятельности, слабоумию и т. д.

Каждый нейрон окружен защитной оболочкой из глиальных клеток, они буквально заполняют все межклеточное пространство и составляют 40 % от вещества головного мозга. Глия или совокупность глиальных клеток выполняет очень важные функции: защищает нейроны от неблагополучных внешних воздействий, поставляет нервным клеткам питательные вещества и выводит продукты их жизнедеятельности.

Глиальные клетки стоят на страже здоровья и целостности нейронов, поэтому не допускают проникновение в нервные клетки многих посторонних химических веществ. В том числе и лекарственных препаратов. Поэтому эффективность различных лекарств, призванных усилить деятельность мозга, совершенно непредсказуема, и действуют они по-разному на каждого человека.

Дендриты и аксоны

Несмотря на сложность устройства нейрона, сам по себе он не играет существенной роли в работе мозга. Наша нервная деятельность, в том числе мыслительная активность – это результат взаимодействия множества нейронов, обменивающихся сигналами. Прием и передача этих сигналов, точнее, слабых электрических импульсов происходит с помощью нервных волокон.

Нейрон имеет несколько коротких (около 1 мм) разветвленных нервных волокон – дендритов, названных так из-за схожести с деревом. Дендриты отвечают за прием сигналов от других нервных клеток. А в качестве передатчика сигналов выступает аксон. Это волокно у нейрона только одно, зато оно может достигать в длину до 1,5 метров. Соединяясь с помощью аксонов и дендритов, нервные клетки образуют целые нейронные сети. И чем сложнее система взаимосвязей, тем сложнее наша психическая деятельность.

Работа нейрона

В основе сложнейшей деятельности нашей нервной системы – обмен слабыми электрическими импульсами между нейронами. Но проблема в том, что изначально аксон одной нервной клетки и дендриты другой не соединены, между ними находится пространство, заполненное межклеточным веществом. Это так называемая синаптическая щель, и преодолеть ее сигнал не может. Представьте, что два человека тянут друг к другу руки и совсем чуть-чуть не дотягиваются.

Эта проблема решается нейроном просто. Под воздействием слабого электрического тока возникает электрохимическая реакция и формируется белковая молекула – нейротрансмиттер. Эта молекула и перекрывает синаптическую щель, став своеобразным мостиком для прохождения сигнала. Нейротрансмиттеры выполняют и еще одну функцию – они связывают нейроны, и чем чаще проходит сигнал по этой нервной цепи, тем сильнее эта связь. Представьте брод через реку. Проходя по нему, человек бросает в воду камень, и затем каждый следующий путник поступает так же. В результате возникает прочный, надежный переход.

Такое соединение между нейронами называют синапсом, и оно играет важную роль в деятельности мозга. Считается, что даже наша память – это результат работы . Эти связи обеспечивают большую скорость прохождения нервных импульсов – сигнал по цепи нейронов движется со скоростью 360 км/час или 100 м/сек. Можно посчитать, за какое время в головной мозг попадет сигнал от пальца, который вы случайно укололи иголкой. Есть старая загадка: «Что быстрее всего на свете?». Ответ: «Мысль». И это очень было точно подмечено.

Виды нейронов

Нейроны находятся не только в головном мозге, где они, взаимодействуя, образуют центральную нервную систему. Нейроны расположены во всех органах нашего тела, в мышцах и связках на поверхности кожи. Особенно много их в рецепторах, то есть органах чувств. Разветвленная сеть нервных клеток, которая пронизывает все тело человека – это периферическая нервная система, которая выполняет не менее важные функции, чем центральная. Все разнообразие нейронов разделяют на три основных группы:

  • Аффекторные нейроны получают информацию от органов чувств и в виде импульсов по нервным волокнам поставляют ее к головному мозгу. Эти нервные клетки имеют самые длинные аксоны, так как их тело находится в соответствующем отделе головного мозга. Существует строгая специализация, и звуковые сигналы поступают исключительно в слуховой отдел мозга, запахи – в обонятельный, световые – в зрительный и т. д.
  • Промежуточные или вставочные нейроны занимаются обработкой информации, поступившей от аффекторов. После того как информация оценена, промежуточные нейроны подают команду расположенным на периферии нашего тела органам чувств и мышцам.
  • Эфферентные или эффекторные нейроны передают эту команду от промежуточных в виде нервного импульса к органам, мышцам и т. д.

Самой сложной и наименее понятной является работа промежуточных нейронов. Они отвечают не только за рефлекторные реакции, такие, например, как отдергивание руки от горячей сковородки или моргание при вспышке света. Эти нервные клетки обеспечивают такие сложнейшие психические процессы, как мышление, воображение, творчество. И как мгновенный обмен нервными импульсами между нейронами превращается в яркие образы, фантастические сюжеты, гениальные открытия, да и просто в размышления о тяжелом понедельнике? Это главная тайна головного мозга, к разгадке которой ученые даже пока не приблизились.

Единственное, что удалось выяснить, что разные виды мыслительной деятельности связаны с активностью разных групп нейронов. Мечты о будущем, заучивание стихотворения, восприятие близкого человека, обдумывание покупок – все это отражается в нашем мозге как вспышки активности нервных клеток в различных точках коры головного мозга.

Функции нейронов

Учитывая, что нейроны обеспечивают работу всех систем организма, функции нервных клеток должны быть очень разнообразны. К тому же все они пока еще даже до конца и не выяснены. Среди множества различных классификаций этих функций мы выберем одну, наиболее понятную и близкую к проблемам психологической науки.

Функция передачи информации

Это основная функция нейронов, с которой связаны и другие, хоть и не менее значимые. Эта же функция является и наиболее изученной. Все внешние сигналы, поступающие на органы, попадают в головной мозг, где обрабатываются. А затем в результате обратной связи в виде импульсов-команд переносятся по эфферентным нервным волокнам обратно к органам чувств, мышцам и т. д.

Такая постоянная циркуляция информации происходит не только на уровне периферической нервной системы, но и в головном мозге. Связи между нейронами, обменивающимися информацией, образуют необычайно сложные нейронные сети. Представьте только: в головном мозге насчитывается не менее 30 млрд нейронов, и каждый из них может иметь до 10 тысяч связей. В середине XX века кибернетики пытались создать электронную вычислительную машину, работающую по принципу головного мозга человека. Но это им не удалось – процессы, происходящие в центральной нервной системе, оказались слишком сложными.

Функция сохранения опыта

Нейроны отвечают за то, что мы называем памятью. Точнее, как выяснили нейрофизиологи, сохранение следов проходивших по нейронным цепям сигналов является своеобразным побочным эффектом деятельности мозга. Основа памяти – это те самые белковые молекулы – нейротрансмиттеры, которые возникают в качестве связующих мостиков между нервными клетками. Поэтому специального отдела мозга, отвечающего за хранение информации, нет. А если вследствие травмы или болезни происходит разрушение нервных связей, то человек может частично утратить память.

Интегративная функция

Это обеспечение взаимодействия между разными отделами головного мозга. Мгновенные «вспышки» передающихся и принимающихся сигналов, очаги повышенного возбуждения в коре головного мозга – это и есть рождение образов, и мыслей. Сложные нервные связи, объединяющие между собой различные участки коры больших полушарий и проникающие в подкорковую зону, являются продуктом нашей психической деятельности. И чем больше возникает таких связей, тем лучше память и продуктивнее мышление. То есть, по сути, чем больше мы думаем, тем умнее становимся.

Функция производства белков

Деятельность нервных клеток не ограничивается информационными процессами. Нейроны – это настоящие фабрики белков. Это те самые нейротрансмиттеры, которые не только выполняют функцию «мостика» между нейронами, но и играют огромную роль в регуляции работы нашего организма в целом. В настоящее время насчитывается около 80 видов этих белковых соединений, выполняющих разнообразные функции:

  • Норадреналин, иногда его называют гормоном ярости или . Он тонизирует организм, повышает работоспособность, заставляет чаще биться сердце и готовит организм к немедленным действиям по отражению опасности.
  • Допамин – это главный тоник нашего организма. Он участвует в активизации деятельности всех систем, в том числе во время пробуждения, при физических нагрузках и создает положительный эмоциональный настрой вплоть до эйфории.
  • Серотонин – это тоже вещество «хорошего настроения», хоть на физическую активность оно и не влияет.
  • Глутамат – трансмиттер, необходимый для работы памяти, без него невозможно долгосрочное хранение информации.
  • Ацетилхолин управляет процессами сна и пробуждения, а также необходим для активизации внимания.

Нейротрансмиттеры, точнее их количество, влияют на здоровье организма. И если возникают какие-то проблемы с выработкой этих белковых молекул, то могут развиться серьезные заболевания. Например, недостаток допамина – это одна из причин болезни Паркинсона, а если этого вещества вырабатывается слишком много, то может развиться шизофрения. Если же недостаточно вырабатывается ацетилхолина, то может возникнуть весьма неприятная болезнь Альцгеймера, которая сопровождается слабоумием.

Формирование нейронов головного мозга начинается еще до рождения человека, и в течение всего периода взросления происходит активное формирование и усложнение нервных связей. Долгое время считалось, что у взрослого человека новые нервные клетки появляться не могут, а вот процесс их отмирания неизбежен. Поэтому умственное возможно только за счет усложнения нервных связей. Да и то в все обречены на снижение умственных способностей.

Но недавние исследования опровергли этот пессимистический прогноз. Швейцарские ученые доказали, что есть отдел головного мозга, который отвечает за рождение новых нейронов. Это гиппокамп, он ежедневно продуцирует до 1400 новых нервных клеток. А нам с вами остается только активнее включать их в работу головного мозга, получать и осмысливать новую информацию, тем самым создавая новые нервные связи и усложняя нейронную сеть.

Нервная система является самой сложной и мало изученной частью нашего организма. Она состоит из 100 миллиардов клеток – нейронов, и глиальных клеток, которых примерно в 30 раз больше. К нашему времени ученым удалось изучить только 5% нервных клеток. Все остальные пока загадка, которую медики стараются разгадать любыми методами.

Нейрон: строение и функции

Нейрон – главный структурный элемент нервной системы, эволюционировавший с нейроефекторных клеток. Функция нервных клеток заключается в ответе на раздражители сокращением. Это клетки, которые способны передавать информацию с помощью электрического импульса, химическим и механическим путями.

За исполняющими функциями нейроны бывают двигательными, чувствительными и промежуточными. Чувствительные нервные клетки передают информацию от рецепторов в головной мозг, двигательные – к мышечным тканям. Промежуточные нейроны способны выполнять и ту, и другую функции.

Анатомически нейроны состоят из тела и двух типов отростков – аксонов и дендритов. Дендритов зачастую есть несколько, их функция в улавливании сигнала от других нейронов и создании связей между нейронами. Аксоны предназначены для передачи того самого сигнала на другие нервные клетки. Снаружи нейроны покрыты специальной оболочкой, из специального белка – миелина. Он склонен к самообновлению на протяжении всей человеческой жизни.

Как же выглядит передача того самого нервного импульса ? Представим, что Вы взялись рукой за горячую ручку сковороды. В тот момент реагируют рецепторы, находящиеся в мышечной ткани пальцев рук. С помощью импульсов, они посылают информацию в главный мозг. Там информация «переваривается» и формируется ответ, который отправляется обратно к мышцам, субъективно проявляясь чувством жжения.

Нейроны, восстанавливаются ли они?

Еще в детстве нам мама говорила: береги нервную систему, клетки не восстанавливаются. Тогда такая фраза звучала как то пугающе. Если клетки не восстанавливаются, что же делать? Как уберечься от их гибели? На такие вопросы должна бы ответить современная наука. В общей сложности не все так плохо и страшно. Весь организм имеет большие возможности восстановления, почему же нервные клетки не могут. Ведь после черепно-мозговых травм, инсультов, когда идет существенное повреждения тканей мозга, он как то возвращает себе утраченные функции. Соответственно в нервных клетках, что-то происходит.

Еще при зачатии в организме «программируется» отмирание нервных клеток. Некоторые исследования говорят о гибели 1% нейронов в год . В таком случае лет за 20, мозг износился бы вплоть до невозможности человеком выполнять самые простые вещи. Но так не происходит, и мозг способен полноценно функционировать к глубокой старости.

Сначала ученые проводили исследование восстановления нервных клеток у животных. После повреждения мозга у млекопитающих, оказалось, что имеющиеся нервные клетки разделились пополам, и образовалось два полноценных нейрона, в итоге функции мозга восстановились. Правда, такие способности обнаружили только в молодых животных. В старых млекопитающих увеличения клеток не произошло. В дальнейшем опыты проводили на мышах, их запускали в большой город, тем самым заставляя искать выход. И заметили интересную вещь, количество нервных клеток у подопытных мышей увеличилось, в отличие от тех, которые жили в обычных условиях.

Во всех тканях организма, восстановление происходит путем деления существующих клеток . После проведение исследований нейрона, медики твердо заявили: нервная клетка не делится. Однако это ничего не значит. Новые клетки могут образоваться путем нейрогенеза, который начинается во внутриутробном периоде и продолжается всю жизнь. Нейрогенез – это синтез новых нервных клеток с предшественников – стволовых клеток, которые в последующем мигрируют, дифференцируются и превращаются в зрелые нейроны. Впервые сообщение о таком восстановлении нервных клеток появилось еще в 1962 году. Но оно ничем не подкреплялось, соответственно не имело никакого значения.

Примерно двадцать лет назад, новые исследования показали, что нейрогенез существует в мозге . У птиц, начинавших много петь весной, количество нервных клеток возрастало вдвое. После завершения певчего периода, количество нейронов опять уменьшалось. В дальнейшем было доказано, что нейрогенез может происходить только в некоторых участках мозга. Одним из них является область вокруг желудочков. Вторым — гиппокамп, расположенный возле бокового желудочка мозга, и отвечающий за память, мышление и эмоции. Поэтому способность запоминать и размышлять, изменяются в течение жизни, вследствие воздействия разных факторов.

Как видно из вышесказанного, хоть мозг на 95% еще не изучен, имеются достаточно фактов, подтверждающих, что нервные клетки восстанавливаются.

Нейроны головного мозга. История открытия нейрона. Строение нейрона. Рождение нейрона, миграция, его функции и механизм действия. Отчего гибнут нейроны.

Нейроны головного мозга – термин на слуху у каждого кому близка тема ДЦП, но далеко не каждый знает, что собой представляет нейрон, как устроен и как работает.

Нейрон, или неврон в переводе с греческого – волокно, нерв.

Нейроны - это узкоспециализированные клетки из которых состоит нервная система. Задача нейронов – обмен информацией между телом и мозгом.

Нейроны - электрически возбудимые клетки, которые обрабатывают, хранят и передают информацию с помощью электрических и химических сигналов.

Нейроны головного мозга – история открытия

До недавнего времени большинство нейробиологов считали, что мы рождаемся с определенным набором нейронов и это окончательная цифра. В дальнейшем нейроны могут только гибнуть, но не могут восстанавливаться. Видимо отсюда и произошло высказывание, что «нервные клетки не восстанавливаются».

Используя набор нейронов, данных при рождении, ребенок по мере взросления выстраивает их в цепочки, соответствующие определенным навыкам и опыту. Таким образом эти цепочки являются информационными магистралями между мозгом и различными участками тела. Ученые полагали, что после того как нейроны головного мозга создали цепь, добавление в неё новых нейронов невозможно т.к. это нарушит информационный поток и отключит коммуникативную систему мозга.

В 1962 году представление о нейронах претерпело значительное изменение. Нейробиологу Джозефу Альтману удалось доказать факт рождения новых нейронов в мозге взрослой крысы. А в последующие годы были приведены доказательства миграции новых нейронов от места своего рождения в другие области мозга.

В 1983 году процесс рождения новых нейронов удалось зафиксировать и в мозге взрослой обезьяны.

Это открытие было настолько удивительным и невероятным, а мнение о нейронах мозга настолько устоявшимся, что что многие ученые отказывались верить, в возможность подобных процессов в мозге человека.

Однако последние десятилетия доказали рождение нейронов и в мозге взрослого человека.

Для некоторых нейробиологов и по сей день нейрозенез во взрослом мозге является недоказанной теорией. Но большинство считают, что открытие нейрогенеза открывает невероятные возможности в области неврологии человека.

Строение нейрона

Основными составляющими нейрона являются:

  • тело клетки с ядром
  • расширения клетки – аксон и дентрит
  • терминаль (концевая ветвь аксона)
  • глии (глиальные клетки)

Центральная нервная система (включая головной и спинной мозг) состоит из двух основных типов клеток – нейроны и глии. Глии количественно превосходят нейроны, но нейрон остается главной клеткой нервной системы.

Нейроны используют электрические импульсы и химические сигналы для передачи информации между различными областями мозга, а также между мозгом и остальной частью нервной системы.

Все, что мы думаем, чувствуем и делаем, было бы невозможно без работы нейронов и их опорных клеток, глиальных клеток.

Нейроны имеют три основные части: тело клетки и два расширения, называемые аксоном и дендритом. Внутри тела клетки находится ядро, которое контролирует активность клетки и содержит генетический материал клетки.

Аксон выглядит как длинный хвост, его задача передавать сообщения. Дендриты выглядят как ветви дерева и выполняют функции получения сообщений. Нейроны общаются друг с другом через крошечное пространство, называемое синапсом, между аксонами и дендритами соседних нейронов.

Существует три класса нейронов:

  1. Сенсорные нейроны- несут информацию из органов чувств (таких как глаза, уши, нос) в мозг.
  2. Моторные (двигательные) нейроны- контролируют добровольную мышечную активность, такую как речь, а также передают сообщения от нервных клеток в мышцы.
  3. Все остальные нейроны называются — интернейронами.

Нейроны являются наиболее разнообразными клетками в организме. Внутри этих трех классов нейронов есть сотни разных типов, каждый из которых обладает определенными способностями к передаче данных.

Общаясь друг с другом нейроны создают уникальные связи, это делает каждого из нас не похожим на другого в том, как мы думаем, чувствуем и действуем.

Зеркальные нейроны

Очень интересны функции зеркальных нейронов. Зеркальные нейроны – это такая разновидность нейронов головного мозга, которые возбуждаются не только при самостоятельном выполнении действия, но и при наблюдении за тем, как это действие выполняют другие.

Таким образом можно сказать, что зеркальные нейроны отвечают за подражание или имитацию.

Изучение принципов работы зеркальных нейронов очень перспективно в решении проблем реабилитации церебрального паралича.

Рождение нейронов

Рождение новых нейронов по-прежнему является вопросом, вокруг которого не умолкают споры. Хотя есть неоспоримые данные, подтверждающие что нейрогенез (рождение нейронов) процесс, не прекращающийся на протяжении всей жизни индивида.

Нейроны рождаются в особых клетках, называемых – . Наука о стволовых клетках является довольно молодой и вопросов в ней пока больше, чем ответов. Но мы знаем, что метод лечения ДЦП при помощи стволовых клеток уже имеет место быть и достаточно успешно используется.

Миграция нейронов

Очень интересный вопрос – ! Рождение нейрона по запросу нервной системы это только половина дела, ведь ему еще нужно добраться туда откуда послан запрос и где его ждут.

Как нейрон понимает куда ему идти и что помогает ему туда добраться? В настоящее время ученые увидели два процесса доставки нейронов от места рождения в другие отделы мозга.

  1. Передвижение по специальным клеткам – радиальным глиям. Эти клетки простирают свои волокна от внутренних слоев мозга к внешним. И нейроны скользят по ним, пока не достигнут места назначения.
  2. Химические сигналы. На поверхности нейронов были обнаружены специальные молекулы – адгезии, которые связываются с подобными молекулами на соседних глиальных клетках или аксонах нерва. И так передавая сигнал друг другу ведут нейрон к его окончательному местоположению.

Не все нейроны успешно преодолевают этот путь. Есть мнение, что две трети нейронов гибнет в пути. А часть из тех, что выжили сбиваются с пути и в последствии внедряются в цепочки на не свои места.

Некоторые ученые подозревают, что такие ошибки приводят к шизофрении, дислексии, . Доказательств нет, только предположение.

Гибель нейронов

В норме нейроны – клетки долгожители в организме человека. Но иногда они начинают массово гибнуть в тех или иных структурах мозга, приводя к различным заболеваниям нервной системы. Иногда причины их гибели удается установить, иногда нет, вопрос остается открытым.

Так, например, известно, что при болезни Паркинсона гибнут нейроны, которые продуцируют дофамин, в области мозга, которая контролирует движения тела. Это приводит к трудностям при инициировании движения. Что является спусковым механизмом этого процесса — нет ответа.

При болезни Альцгеймера враждебные белки накапливаются в нейронах и вокруг нейронов в неокортексе и гиппокампе (части мозга), которые контролируют память. Когда эти нейроны умирают, люди теряют способность запоминать и способность выполнять повседневные задачи.

Гипоксия мозга – приводит к кислородному голоданию нейронов и в дальнейшем, если процесс не остановить вовремя, к их гибели.

Физические травмы мозга – приводят к разрыву связей между нейронами. Таким образом нейроны живы, но у них нет возможности взаимодействовать друг с другом.

Искусственный нейрон

Дальнейшее изучение вопросов жизни и гибели нейронов, дает надежду на разработку новых методов лечения нервной системы.

Современные исследования показывают, что нервные клетки в состоянии восстанавливаться. Стволовые клетки могут генерировать все типы нейронов. Возможно стволовыми клетками можно манипулировать и стимулировать в них рождение новых нейронов необходимого типа.

Таким образом процесс восстановления, обновления мозга, замены погибших нейронов нейронами нового поколения – звучит не так уж фантастически.

Возможно термин – искусственные нейроны головного мозга, это наше не такое уж далекое будущее.

озг, восстанови себя

Н а протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и.

Нейробиологи на протяжении десятков лет ищут способы улучшить состояние мозга. Стратегия лечения основывалась на восполнении недостатка нейромедиаторов - химических веществ, передающих сообщения нервным клеткам (нейронам). При болезни Паркинсона, например, мозг больного теряет способность вырабатывать нейромедиатор дофамин, поскольку производящие его клетки гибнут. Химический «родственник» дофамина, L-Допа, может временно облегчить состояние больного, но не излечить его. Для замены нейронов, погибающих при таких неврологических заболеваниях, как болезни Гентингтона и Паркинсона, и при травмах, нейробиологи пытаются имплантировать стволовые клетки, полученные из эмбрионов. В последнее время исследователи заинтересовались нейронами, полученными из эмбриональных стволовых клеток человека, которые при определенных условиях можно заставить образовывать в чашках Петри любые типы клеток человеческого организма.

Несмотря на то что у стволовых клеток много преимуществ, очевидно, следует развивать способности взрослой нервной системы к самовосстановлению. Для этого необходимо ввести вещества, стимулирующие мозг к образованию собственных клеток и восстановлению поврежденных нервных цепей.

Новорожденные нервные клетки

В 1960 - 70-х гг. исследователи пришли к выводу, что центральная нервная система млекопитающих способна к регенерации. Первые эксперименты показали, что основные ветви нейронов взрослого головного и - аксоны могут восстанавливаться после повреждения. Вскоре было обнаружено рождение новых нейронов в мозге взрослых птиц, обезьян и людей, т.е. нейрогенез.

Возникает вопрос: если центральная нервная система может образовывать новые, способна ли она восстанавливаться в случае болезни или травмы? Для того чтобы ответить на него, необходимо понять, как происходит нейрогенез во взрослом мозге и каким образом можно его.

Рождение новых клеток происходит постепенно. Так называемые мультипотентные стволовые клетки в мозге периодически начинают делиться, давая начало другим стволовым клеткам, которые могут вырасти в нейроны или опорные клетки, называемые. Но для созревания новорожденные клетки должны избегать влияния мультипотентных стволовых клеток, что удается лишь половине из них - остальные гибнут. Такое расточительство напоминает процесс, происходящий в организме до рождения и в раннем детстве, когда возникает больше нервных клеток, чем необходимо для образования мозга. Выживают только те из них, которые формируют действующие связи с другими.

Станет ли уцелевшая молодая клетка нейроном или глиальной клеткой, зависит от того, в каком участке мозга она окажется и какие процессы будут происходить в этот период. Новому нейрону требуется более месяца, чтобы начать полноценно функционировать. посылать и принимать информацию. Таким образом. нейрогенез представляет собой не одномоментное событие. а процесс. который регулируется веществами. называемыми факторами роста. Например, фактор, названный «звуковой еж» (sonic hedgehog), обнаруженный впервые у насекомых, регулирует способность незрелых нейронов к пролиферации. Фактор notch и класс молекул. названных морфогенетическими протеинами кости, видимо, определяют, станет ли новая клетка глиальной или нервной. Как только это произойдет. другие факторы роста. такие как мозговой нейротрофический фактор (BDNF). нейротрофины и инсулинподобный фактор роста (IGF), начинают поддерживать жизнедеятельность клетки, стимулируя ее созревание.

Место действия

Новые нейроны возникают во взрослом мозге млекопитающих не случайно и. по всей видимости. образуются только в заполненных жидкостью пустотах в - в желудочках, а также в гиппокампе - структуре, спрятанной глубоко в мозге. имеющей форму морского конька. Нейробиологи доказали, что клетки, которым суждено стать нейронами. перемещаются из желудочков в обонятельные луковицы. которые получают информацию от клеток, расположенных в слизистой носа и чувствительных к. Никто точно не знает, почему обонятельной луковице требуется столько новых нейронов. Легче предположить, зачем они нужны гиппокампу: поскольку эта структура важна для запоминания новой информации, дополнительные нейроны, вероятно. способствуют упрочению связей между нервными клетками, повышая способность мозга обрабатывать и хранить сведения.

Процессы нейрогенеза также обнаружены за пределами гиппокампа и обонятельной луковицы, например, в префронтальной коре - обители интеллекта и логики. а также в других областях взрослого головного и спинного мозга . Последнее время появляются все новые подробности о молекулярных механизмах, управляющих нейрогенезом, и о химических стимулах, регулирующих его. и мы вправе надеяться. что со временем можно будет искусственно стимулировать нейрогенез в любой части мозга. Зная, как факторы роста и локальное микроокружение управляют нейрогенезом, исследователи рассчитывают создать методы лечения, позволяющие восстановить больной или поврежденный мозг.

С помощью стимулирования нейрогенеза можно улучшить состояние пациента при некоторых неврологических заболеваниях. Например. причина - закупорка сосудов головного мозга, в результате чего из-за недостатка кислорода гибнут нейроны. После инсульта в гиппокампе начинает развиваться нейрогенез, стремящийся «вылечить» поврежденную ткань мозга с помощью новых нейронов. Большинство новорожденных клеток гибнет, однако некоторые успешно мигрируют к поврежденному участку и превращаются в полноценные нейроны. Несмотря на то что для компенсации повреждений при тяжелом инсульте этого недостаточно. нейрогенез может помочь мозгу после микроинсультов,которые часто проходят незамеченными. Сейчас нейробиологи пытаются применять васкуло-эпидермальный фактор роста (VEGF) и фактор роста фибробластов (FGF) для усиления естественного восстановления.

Оба вещества представляют собой крупные молекулы, которые с трудом преодолевают гематоэнцефалический барьер, т.е. сеть тесно переплетенных клеток, выстилающих кровеносные сосуды мозга. В 1999 г. биотехнологическая компания Wyeth-Ayerst Laboratories and Scios из Калифорнии приостановила клинические испытания FGF применяемого для. поскольку его молекулы не попадали в мозг. Некоторые исследователи пытались решить эту задачу, соединяя молекулу FGF с другой, которая вводила клетку в заблуждение и заставляла ее захватывать весь комплекс молекул и переносить его в ткань мозга. Другие ученые методами генной инженерии создавали клетки, вырабатывающие FGF. и трансплантировали их в мозг. Пока подобные эксперименты проводились лишь на животных.

Стимулирование нейрогенеза может оказаться действенным при лечении депрессии. главной причиной которой (помимо генетической предрасположенности) считается хронический. ограничивающий, как известно. количество нейронов в гиппокампе. Многие из выпускаемых лекарственных средств . показанных при депрессии. в том числе прозак. усиливают нейрогенез у животных. Интересно, что для снятия депрессивного синдрома с помощью этого препарата требуется один месяц - столько же. сколько и для осуществления нейрогенеза. Возможно. депрессия отчасти вызвана замедлением данного процесса в гиппокампе. Последние клинические исследования с применением методов визуализации нервной системы подтвердили. что у пациентов с хронической депрессией гиппокамп меньше, чем у здоровых людей. Длительное применение антидепрессантов. похоже. подстегивает нейрогенез: у грызунов. которым давали эти препараты на протяжении нескольких месяцев. в гиппокампе возникали новые нейроны.

Нейрональные стволовые клетки дают начало новым клеткам мозга. Они периодически делятся в двух основных областях: в желудочках (фиолетовый цвет), которые заполнены спинномозговой жидкостью , питающей центральную нервную систему, и в гиппокампе (голубой цвет) - структуре, необходимой для обучения и памяти. При пролиферации стволовых клеток (внизу) образуются новые ствоповые клетки и клетки-предшественники, которые могут превратиться либо в нейроны, либо в поддерживающие клетки, называемые глиальными (астроциты и дендроциты). Однако дифференцировка новорожденных нервных клеток может произойти только после того, как они уйдут прочь от своих предков (красные стрелки), что удается в среднем лишь половине из них, а остальные гибнут. Во взрослом мозге новые нейроны были обнаружены в гиппокампе и обонятельных луковицах, необходимых для восприятия запахов. Ученые надеются заставить взрослый мозг восстанавливаться, вызывая деление и развитие нейрональных стволовых клеток или клеток-предшественников там и тогда, где и когда это необходимо.

Стволовые клетки как метод лечения

Потенциальным средством для восстановления поврежденного мозга исследователи считают два типа стволовых клеток. Во-первых, нейрональные стволовые клетки взрослого мозга: редкие первичные клетки, сохранившиеся от ранних стадий эмбрионального развития, обнаруженные как минимум в двух областях мозга. Они могут делиться на протяжении всей жизни, давая начало новым нейронам и поддерживающим клеткам, называемым глией. Ко второму типу относятся человеческие эмбриональные стволовые клетки, выделенные из зародышей на очень ранней стадии развития, когда весь эмбрион состоит примерно из ста клеток. Такие эмбриональные стволовые клетки могут давать начало любым клеткам организма.

В большинстве исследований производится наблюдение за ростом нейрональных стволовых клеток в культуральных чашках. Они могут там делиться, их можно генетически пометить и затем трансплантировать назад в нервную систему взрослого индивидуума. В экспериментах, которые пока проводились только на животных, клетки хорошо приживаются и могут дифференцироваться в зрелые нейроны в двух областях мозга, где образование новых нейронов происходит и в норме, - в гиппокампе и в обонятельных луковицах. Однако в других областях нейрональные стволовые клетки, взятые из взрослого мозга, не торопятся становиться нейронами, хотя могут стать глией.

Проблема со взрослыми нейрональными стволовыми клетками состоит в том, что они пока еще незрелые. Если взрослый мозг, в который их пересадили, не будет вырабатывать сигналы, необходимые для стимуляции их развития в определенный тип нейронов - например в гиппокампальный нейрон, - они либо погибнут, либо станут глиальной клеткой, либо так и останутся недифференцированной стволовой клеткой. Для решения этого вопроса необходимо определить, какие биохимические сигналы заставляют нейрональную стволовую клетку стать нейроном данного типа, и затем направить развитие клетки по такому пути прямо в культуральной чашке. Ожидается, что после трансплантации в заданный участок мозга эти клетки останутся нейронами того же типа, сформируют связи и начнут функционировать.

Устанавливая важные связи

Поскольку проходит около месяца с момента деления нейрональной стволовой клетки до тех пор, пока ее потомок не включится в функциональные цепи мозга, роль этих новых нейронов в, вероятно, определяется не столько родословной клетки, сколько тем, как новые и уже существующие клетки соединяются друг с другом (образуя синапсы) и с существующими нейронами, формируя нервные цепи. В процессе синаптогенеза так называемые шипики на боковых отростках, или дендритах, одного нейрона соединяются с основной ветвью, или аксоном, другого нейрона.

Как показывают недавние исследования, дендритные шипики (внизу) могут менять свою форму в течение нескольких минут. Это свидетельствует о том, что синаптогенез может лежать в основе обучения и памяти. Одноцветные микро-фотографии мозга живой мыши (красная, желтая, зеленая и голубая) были сделаны с интервалом в одни сутки. Многоцветное изображение (крайнее справа) представляет собой те же фотографии, наложенные друг на друга. Участки, не претерпевшие изменений, выглядят практически белыми.

Помоги мозгу

Еще одно заболевание, провоцирующее нейрогенез, - болезнь Альцгеймера. Как показали недавние исследования, в органах мыши. которой были введены гены человека, пораженные болезнью Альцгеймера. обнаружены различные отклонения нейрогенеза от нормы. В результате такого вмешательства у животного в избытке вырабатывается мутантная форма предшественника человеческого амилоидного пептида, и уровень нейронов в гиппокампе падает. А гиппокамп мышей с мутантным геном человека. кодирующим белок пресенилин. обладал малым количеством делящихся клеток и. соответственно. меньшим числом выживших нейронов. Введение FGF непосредственно в мозг животных ослабляло тенденцию; следовательно. факторы роста могут стать хорошим средством лечения этого разрушительного заболевания.

Следующий этап исследований - факторы роста, управляющие различными стадиями нейрогенеза (т.е. рождением новых клеток, миграцией и созреванием молодых клеток), а также факторы, тормозящие каждый этап. Для лечения таких заболеваний, как депрессия, при которой снижается количество делящихся клеток, необходимо найти фармакологические вещества или другие методы воздействия. усиливающие пролиферацию клеток. При эпилепсии, видимо. новые клетки рождаются. но затем мигрируют в ложном направлении, и нужно понять. как направить «заблудшие» нейроны по правильному пути. При злокачественной глиоме мозга глиальные клетки пролиферируют и образуют смертельно опасные разрастающиеся опухоли. Хотя причины возникновения глиомы еще не ясны. некоторые полагают. что она возникает в результате неконтролируемого разрастания стволовых клеток мозга. Лечить глиому можно с помощью природных соединений. регулирующих деление таких стволовых клеток.

Для лечения инсульта важно выяснить. какие факторы роста обеспечивают выживание нейронов и стимулируют превращение незрелых клеток в здоровые нейроны. При таких заболеваниях. как болезнь Гентингтона. амиотрофический боковой склероз (АЛС) и болезнь Паркинсона (когда гибнут совершенно конкретные типы клеток, что ведет к развитию специфических когнитивных или моторных симптомов). данный процесс происходит наиболее часто, поскольку клетки. с которыми связаны эти болезни, располагаются в ограниченных областях.

Возникает вопрос: как управлять процессом нейрогенеза при том или ином типе воздействия, чтобы контролировать количество нейронов, поскольку их избыток также представляет опасность? Например, при некоторых формах эпилепсии нейрональные стволовые клетки продолжают делиться даже после того, как новые нейроны уже утрачивают способность устанавливать полезные связи. Нейробиологи предполагают, что «неправильные» клетки остаются недозрелыми и оказываются в ненужном месте. формируя т.н. фикальные корковые дисплазии (ФКД), генерирующие эпилептиформные разряды и вызывая эпилептические припадки. Не исключено, что введение факторов роста при инсульте. болезни Паркинсона и других заболеваниях может заставить нейрональные стволовые клетки делиться чересчур быстро и привести к сходным симптомам. Поэтому исследователи должны сначала изучить применение факторов роста для индукции рождения, миграции и созревания нейронов.

При лечении травм спинного мозга, АЛС или необходимо заставить стволовые клетки производить олигодендроциты, одну из разновидностей глиальных клеток. Они необходимы для коммуникации нейронов друг с другом. поскольку изолируют длинные аксоны, проходящие от одного нейрона к другому. предотвращая рассеяние проходящего по аксону электрического сигнала. Известно, что стволовые клетки в спинном мозге обладают способностью время от времени производить олигодендроциты. Исследователи применили факторы роста для стимулирования данного процесса у животных с травмой спинного мозга и получили положительные результаты.

Зарядка для мозга

Одна из важных особенностей нейрогенеза в гиппокампе состоит в том, что персональный индивидуума может влиять на скорость деления клеток, количество выживших молодых нейронов и их способность встраиваться в нервную сеть. Например. когда взрослых мышей переселяют из обычных и тесных клеток в более удобные и просторные. у них происходит значительное усиление нейрогенеза. Исследователи обнаружили, что тренировки мышей в колесе для бега достаточно для того, чтобы удвоить количество делящихся клеток в гиппокампе, что ведет к резкому увеличению числа новых нейронов. Интересно, что регулярная может снять депрессию у людей. Возможно. это происходит благодаря активации нейрогенеза.

Если ученые научатся управлять нейрогенезом, то наши представления о заболеваниях и травмах мозга кардинально изменятся. Для лечения можно будет использовать вещества, избирательно стимулирующие определенные этапы нейрогенеза. Фармакологическое воздействие будет сочетаться с физиотерапией, усиливающей нейрогенез и стимулирующей определенные области мозга к встраиванию в них новых клеток. Учет взаимосвязей между нейрогенезом и умственной и физической нагрузками позволит снизить риск возникновения неврологических заболеваний и усилить природные репаративные процессы в мозге.

Путем стимуляции роста нейронов в мозге здоровые люди получат возможность улучшить состояние своего организма. Однако вряд ли им понравятся инъекции факторов роста, с трудом проникающих сквозь гематоэнцефалический барьер после введения в кровоток. Поэтому специалисты ищут препараты. которые можно было бы выпускать в виде таблеток. Подобное лекарство позволит стимулировать работу генов, кодирующих факторы роста, непосредственно в мозге человека.

Улучшить деятельность мозга возможно также путем генной терапии и трансплантации клеток: искусственно выращенные клетки, производящие конкретные факторы роста. можно имплантировать в определенные области мозга человека. Также предлагается вводить в организм человека гены, кодирующие производство различных факторов роста, и вирусы. способные доставить эти гены до нужных клеток мозга.

Пока не ясно. какой из методов окажется наиболее перспективным. Исследования, проведенные на животных, показывают. что применение факторов роста может нарушить нормальное функционирование мозга. Процессы роста могут вызвать образование опухолей, а трансплантированные клетки - выйти из под контроля и спровоцировать развитие рака. Такой риск может быть оправдан только при тяжелых формах болезни Гентингтона. Альцгеймера или Паркинсона.

Оптимальный способ стимулирования деятельности мозга - интенсивная интеллектуальная деятельность в сочетании со здоровым образом жизни: физическая нагрузка. хорошее питание и полноценный отдых . Экспериментально подтверждается и то. что на связи в мозге влияет окружающая среда. Возможно. когда-нибудь в жилых домах и офисах люди будут создавать и поддерживать специально обогащенную среду для улучшения функционирования мозга.

Если удастся понять механизмы самовосстановления нервной системы, то в скором будущем исследователи овладеют методами. позволяющими использовать собственные ресурсы мозга для его восстановления и совершенствования.

Фред Гейдж

(В мире пауки, № 12, 2003)

Клетка является стержнем биологического организма. Нервная система человека состоит из клеток головного и спинного мозга (нейронов). Они весьма многообразны по строению, обладают огромным количеством различных функций, направленных на существование человеческого организма как биологического вида.

В каждом нейроне одновременно протекают тысячи реакций, направленных на поддержание обмена веществ самой нервной клетки и осуществление ее главных функций - обработки и анализа огромного массива поступающей информации, а также генерации и отправки команд другим нейронам, мышцам, различным органам и тканям организма. Слаженная работа сочетаний нейронов коры головного мозга составляет основу мышления и сознания.

Функции клеточной мембраны

Важнейшими структурными компонентами нейронов, как и любых других клеток, являются клеточные мембраны. Они имеют обычно многослойное строение и состоят из особого класса жировых соединений - фосфолипидов, а также из пронизывающих их...

Нервная система является самой сложной и мало изученной частью нашего организма. Она состоит из 100 миллиардов клеток – нейронов, и глиальных клеток, которых примерно в 30 раз больше. К нашему времени ученым удалось изучить только 5% нервных клеток. Все остальные пока загадка, которую медики стараются разгадать любыми методами.

Нейрон: строение и функции

Нейрон – главный структурный элемент нервной системы, эволюционировавший с нейроефекторных клеток. Функция нервных клеток заключается в ответе на раздражители сокращением. Это клетки, которые способны передавать информацию с помощью электрического импульса, химическим и механическим путями.

За исполняющими функциями нейроны бывают двигательными, чувствительными и промежуточными. Чувствительные нервные клетки передают информацию от рецепторов в головной мозг, двигательные – к мышечным тканям . Промежуточные нейроны способны выполнять и ту, и другую функции.

Анатомически нейроны состоят из тела и двух...

Возможность успешного лечения детей с нарушениями психоневрологического развития базируется на следующих свойствах организма ребенка и его нервной системы:

1. Регенеративные способности самого нейрона, его отростков и нейрональных сетей, входящих в состав функциональных систем . Медленный транспорт цитоскелета по отросткам нервной клетки со скоростью 2 мм/сутки обусловливает и регенерацию поврежденных или недоразвитых отростков нейронов с той же скоростью. Гибель части нейронов и их дефицит в нейрональной сети более или менее полноценно компенсируется запуском аксо-дендритного ветвления сохранившихся нервных клеток с образованием новых дополнительных межнейрональных связей.

2. Компенсация повреждений нейронов и нейрональных сетей в мозге за счет подключения соседних нейрональных групп к выполнению утраченной или недоразвитой функции. Здоровые нейроны, их аксоны и дендриты, как активно работающие, так и резервные, в борьбе за функциональную территорию...

озг, восстанови себя

На протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась память?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и спинного мозга.

Однако за последние пять лет нейробиологи открыли, что мозг все же меняется в течение жизни: происходит образование новых клеток, позволяющих справиться с возникающими трудностями. Такая пластичность помогает мозгу восстанавливаться после травмы или заболевания, увеличивая свои потенциальные возможности.

Нейробиологи на протяжении десятков лет ищут способы улучшить...

Нейроны головного мозга формируются в период пренатального развития . Происходит это за счет разрастания определенного вида клеток, их передвижений, а затем дифференцирования, во время которого они меняют свою форму, размер и функции. Большая часть нейронов гибнет еще во время внутриутробного развития, многие продолжают это делать после рождения и на протяжении всей жизни человека, что заложено генетически. Но вместе с этим явлением происходит и другое – восстановление нейронов в некоторых мозговых отделах.

Процесс, при котором происходит формирование нервной клетки (как в пренатальном периоде, так и жизненном), носит название «нейрогенез».

Широко известное утверждение, что нервные клетки не восстанавливаются когда-то сделал в 1928 году Сантьяго Рамон-И-Халем – испанский ученый-нейрогистолог. Это положение просуществовало до конца прошлого века пока не появилась научная статья Э. Гоулд и Ч. Кросса, в которой приводились факты, доказывающие продуцирование новых...

Нейроны головного мозга разделяются по классификации на клетки с определенным типом функций. Но, возможно, после исследований из Института Дьюка, которые ведет адьюнкт-профессор клеточной биологии, педиатрии и нейробиологии Чай Куо появится новая структурная единица (Chay Kuo).

Он описал клетки головного мозга, которые самостоятельно способны передавать информацию и инициировать преобразование. Механизм их действия в воздействии одним из типов нейронов в субвентрикулярной (ее же называют субэпендимальной) зоне на нейральную стволовую клетку. Она начинает преобразовываться в нейрон. Открытие интересно тем, что доказывает: восстановление нейронов головного мозга становится реальностью для медицины.

Теория Чай Куо

Исследователь отмечает, что о возможности развития нейрона говорили и до него, но он впервые нашел и описывает, что и как включает механизм действия. Клетки нейронов, которые находятся в субвентрикулярной зоне (SVZ) он описывает первым. В зоне мозга...

Восстановление органов и функций организма беспокоит людей в следующих случаях: после разового, но чрезмерного приема алкогольных напитков (застолье по какому-нибудь торжественному поводу) и в ходе реабилитации после алкогольной зависимости, то есть в результате систематического и продолжительного употребления спиртного.

В процессе какого-то обильного застолья (день рождения, свадьба, Новый год, вечеринка и пр.) человек употребляет весьма немалую порцию спиртного в течение минимального отрезка времени. Понятно, что ничего хорошего в такие моменты организм не чувствует. Наибольший вред от таких праздников получают те лица, которые обычно воздерживаются от употребления спиртного или принимают его не часто и в малых дозах. Такие люди очень тяжело переживают восстановление мозга после алкоголя по утрам.

Необходимо знать, что всего лишь 5% спиртного выводится из организма с выдыхаемым воздухом, посредством пото- и мочеотделения. Оставшиеся 95% окисляются внутри...

Препараты для восстановления памяти

Улучшить образование ГАМК в головном мозге помогают аминокислоты: глицин, триптофан, лизин (препараты «глицин», «авитон гинкговита»). Их целесообразно применять со средствами для улучшения мозгового кровоснабжения («кавинтон», «трентал», «винтоцетин») и повышения энергетического обмена нейронов («Коэнзим Q10»). Для стимулирования нейронов во многих странах мира применяется «Гинкго

Улучшить память помогут ежедневные тренировки, нормализация питания и режима дня. Тренировать память можно – каждый день нужно учить небольшие стихотворения, иностранные языки . Не следует перегружать работу мозга. Для улучшения питания клеток, рекомендуют принимать специальные препараты, предназначенные для улучшения памяти.

Эффективные препараты для нормализации и усиления памяти

Дипренил. Препарат, нейтрализующий действие нейротоксинов, попадающих в организм вместе с пищей. Защищает клетки мозга от стресса, поддерживает...

До 90-х годов ХХ века у неврологов существовало стойкое убеждение, что регенерация мозга невозможна. В научном сообществе было сформулировано ложное представление о «стационарных» тканях, к которым в первую очередь отнесли ткань центральной нервной системы, где якобы отсутствуют стволовые клетки. Считали, что делящиеся нервные клетки можно наблюдать лишь в некоторых мозговых структурах плода, а у детей лишь в первые два года жизни. Затем предполагали, что рост клеток прекращается и начинается этап формирования межклеточных контактов в нейронных сетях. В этот период каждый нейрон формирует сотни и, может быть, тысячи синапсов с соседними клетками. В среднем считают, что в нейронных сетях головного мозга взрослого человека функционирует порядка 100 млрд нейронов. Утверждение о том, что взрослый мозг не регенерирует, стало мифом-аксиомой. Ученые, высказывающие иное мнение, обвинялись в некомпетентности, а в нашей стране, бывало, и лишались работы. Природа закладывает в...

Инсульты больше не страшны? Современные разработки…

Все болезни от нервов! Эту народную мудрость знают даже дети. Однако далеко не всем известно, что на языке медицинской науки она имеет конкретное и четко определенное значение. Особенно важно узнать об этом людям, у которых близкие пережили инсульт. Многие из них хорошо знают, что, несмотря на проводимое непростое лечение, утраченные функции у родного человека полностью не восстанавливаются. Кроме того, чем больше времени прошло с момента беды, тем ниже вероятность возвращения речи, движений, памяти. Так как же добиться прорыва в восстановлении близкого человека ? Чтобы ответить на этот вопрос, нужно узнать «врага в лицо» - разобраться в главной причине.

«ВСЕ БОЛЕЗНИ ОТ НЕРВОВ!»

Нервная система координирует все функции организма и обеспечивает ему возможность приспособиться к внешней среде . Головной мозг является ее центральным звеном. Это главный компьютер нашего организма, который регулирует работу всех...

Тема для тех, кому приятнее думать, что нервные клетки восстанавливаются.

Для создания соответствующего мыслеобраза:)

Нервные клетки восстанавливаются

Израильские ученые обнаружили целый биоинструментарий для замены отмерших нервов. Оказалось, что занимаются этим Т-лимфоциты, которых до сих пор считали «вредными чужаками».

Несколько лет назад ученые опровергли знаменитое утверждение «нервные клетки не восстанавливаются»: оказалось, что часть головного мозга работает над восстановлением нервных клеток в течение всей жизни. Особенно при стимулировании мозговой деятельности и физической активности. Но как именно мозг узнает, что пора ускорить процесс регенерации, до сих пор никто не знал.

Чтобы понять механизм восстановления мозга, ученые начали перебирать все виды клеток, которые до того обнаруживались в голове у людей, и причина нахождения который в ней оставалась непонятной. И успешным оказалось изучение одного из подвидов лейкоцитов –...

«Нервные клетки не восстанавливаются» – миф или реальность?

Как говорил герой Леонида Броневого, уездный доктор: «голова - предмет тёмный, исследованию не подлежит…». Компактное скопление нервных клеток, называемое мозгом, хотя и давно исследуется нейрофизиологами, но ответов на все вопросы, связанные с функционированием нейронов ученые получить еще не смогли.

Суть вопроса

Некоторое время назад – вплоть до 90-х годов прошлого века, считалось, что количество нейронов в организме человека имеет постоянную величину и при утрате восстановить поврежденные нервные клетки мозга невозможно. Отчасти это утверждение действительно верно: во время развития эмбриона природой закладывается огромный резерв клеток.

Новорождённый ребенок еще до рождения теряет в результате запрограммированной клеточной гибели – апоптоза, практически 70% из сформировавшихся нейронов. Гибель нейронов продолжается в течение всей жизни.

Начиная с тридцатилетнего возраста этот процесс...

Нервные клетки в головном мозге человека восстанавливаются

До сих пор было известно, что нервные клетки восстанавливаются только у животных. Однако недавно ученые обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны. Однажды они смогут помочь "починить" травмированный мозг.

Ежедневно кожа прирастает на 0,002 миллиметра. Новые кровяные тельца уже через несколько дней после того, как было запущено их производство в костном мозге , выполняют свои основные функции. С нервными клетками все гораздо проблематичней. Да, нервные окончания восстанавливаются в руках, ногах и в толще кожи. Но в центральной нервной системе – в мозге и спинном мозге – этого не происходит. Поэтому человек с поврежденным спинным мозгом не сможет больше бегать. Кроме того, нервная ткань безвозвратно разрушается в результате инсульта.

Однако недавно появилось новое указание на то, что и человеческий мозг способен на производство новых...

Многие годы люди считали, что нервные клетки неспособны восстанавливаться, значит невозможно излечить многие болезни, связанные с их повреждением. Сейчас учёные нашли способы, как восстановить клетки головного мозга, чтобы продлить пациенту полноценную жизнь, в которой он будет помнить множество подробностей.

Есть несколько условий для восстановления клеток головного мозга, если болезнь не зашла слишком далеко, и не случилось полной потери памяти. Организм должен получать достаточное количество витаминов, которые помогут сохранить возможность сосредотачиваться на какой-то проблеме, запоминать необходимые вещи. Для этого нужно употреблять в пищу продукты, в которых они содержатся, это рыба, бананы, орехи и красное мясо. Специалисты считают, что количество приёмов пищи должно быть не более трёх, а есть нужно до появления сытости, это поможет клеткам мозга получить необходимые вещества . Питание имеет большое значение для профилактики нервных заболеваний , не следует увлекаться...

Крылатое выражение "Нервные клетки не восстанавливаются" все с детства воспринимают как непреложную истину. Однако эта аксиома - не более чем миф, и новые научные данные его опровергают.

Схематическое изображение нервной клетки, или нейрона, которая состоит из тела с ядром, одного аксона и нескольких дендритов.

Нейроны отличаются друг от друга по размеру, разветвленности дендритов и длине аксонов.

Понятие "глии" включает все клетки нервной ткани, не являющиеся нейронами.

Нейроны генетически запрограммированы на миграцию в тот или иной отдел нервной системы, где с помощью отростков они устанавливают связи с другими нервными клетками.

Погибшие нервные клетки уничтожаются макрофагами, попадающими в нервную систему из крови.

Этапы образования нервной трубки в зародыше человека.

‹ ›

Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них...

Пантокальцин – это лекарственный препарат , который активно воздействует на обмен веществ в головном мозге, защищает его от вредных воздействий и в первую очередь от недостатка кислорода, оказывает тормозящее и одновременно легкое активизирующее действие на центральную нервную систему (ЦНС).

Как действует пантокальцин на центральную нервную систему

Пантокальцин – это ноотропный препарат, основное действие которого связано с когнитивными (познавательными) функциями головного мозга, препарат выпускается в таблетках по 250 и 500 мг.

Основным действующим веществом пантокальцина является гопантеновая кислота, которая по своему химическому составу и свойствам имеет сходство с гамма-аминомасляной кислотой (ГАМК) – биологически активным веществом , способным усиливать все обменные процессы в головном мозге.

При приеме внутрь пантокальцин быстро всасывается в желудочно-кишечном тракте , распределяется по тканям и попадает в головной мозг, где проникает...


Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.


Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.


Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Мозг человека имеет одну удивительную особенность: он способен производить новые клетки. Бытует мнение, что запас мозговых клеток неограничен, но это утверждение далеко от истины. Естественно, их интенсивное продуцирование припадает на ранние периоды развития организма, с возрастом этот процесс замедляется, но не останавливается. Но это, к сожалению, компенсирует лишь незначительную часть клеток, неосознанно убитых человеком в результате, на первый взгляд, безобидных привычек.

1. Недосыпание

Ученым пока не удалось опровергнуть свою теорию полноценного сна , которая настаивает на 7-9-часовом сне. Именно такая длительность ночного процесса позволяет мозгу полноценно выполнять свою работу и продуктивно проходить все «сонные» фазы. В противном случае, как показали исследования, проведенные на грызунах, происходит гибель 25 % клеток головного мозга, которые отвечают за физиологическую реакцию на тревогу и напряжение. Ученые полагают, что подобный механизм гибели клеток в результате недосыпания работает и у человека, но это пока лишь предположения, проверить которые, по их мнению, удастся в скором будущем.

2. Курение

Болезни сердца, инсульт, хронический бронхит , эмфизема, рак – это не полный перечень негативных последствий , вызываемый пристрастием к сигарете. Исследования 2002 года, проведенные Национальным институтом Франции по вопросам здравоохранения и медицинских исследований, не оставили сомнений в том, что курение убивает клетки головного мозга. И хотя опыты проводились пока что на крысах, ученые полностью уверенны в том, что точно так же эта вредная привычка сказывается на мозговых клетках человека. Подтверждением тому стало исследование индийских ученых, в результате которого научным сотрудникам удалось отыскать в сигаретах опасное для человеческого организма соединение, называемое никотинопроизводным нитрозоаминовым кетоном. ННК ускоряет реакции белых кровяных клеток головного мозга, заставляя их атаковать здоровые мозговые клетки.

3. Обезвоживание

Не секрет, что в человеческом организме содержится много воды, и мозг – не исключение. Постоянное ее пополнение необходимо как организму в целом, так и мозгу в частности. В противном случае активируются процессы, нарушающие работу целых систем и убивающие клетки головного мозга. Как правило, чаще всего это происходит после приема алкоголя, который подавляет работу гормона вазопрессина, отвечающего за сохранение воды в организме. Помимо этого, обезвоживание может наступить вследствие длительного воздействия на организм высокой температуры (например, пребывание под открытыми солнечными лучами или в душном помещении). Но результат, как и в случае с горячительными напитками, может иметь плачевный исход – разрушение клеток головного мозга. Это влечет за собою сбои в работе нервной системы и влияет на интеллектуальные способности человека.

4. Стресс

Стресс считается достаточно полезной реакцией организма, которая активируется в результате появления какой-либо возможной угрозы. Главными защитниками выступают гормоны надпочечников (кортизол, адреналин и норэпинефрин), которые приводят организм в полную боевую готовность и обеспечивают тем самым его сохранность. Но чрезмерное количество этих гормонов (например, в ситуации хронического стресса), в частности кортизола, может стать причиной гибели клеток головного мозга и развития страшных заболеваний на почве ослабленного иммунитета. Разрушение мозговых клеток может повлечь за собою развитие психических заболеваний (шизофрении), а ослабленный иммунитет, как правило, сопровождается развитием тяжелых недугов, самыми распространенными среди которых считаются сердечно-сосудистые заболевания , рак и диабет.

5. Наркотики

Наркотики являют собою специфические химические вещества, разрушающие клетки головного мозга и нарушающие системы связей в нем. В результате действия наркотических веществ активируются рецепторы, вызывающие выработку аномальных сигналов, которые становятся причиной возникновения галлюциногенных проявлений. Происходит этот процесс благодаря сильному повышению уровня определенных гормонов, что двояко сказывается на организме. С одной стороны, большое количество, например, допамина способствует возникновению эффекта эйфории, но с другой – повреждает нейроны, ответственные за регуляцию настроения. Чем больше таких нейронов повреждено, тем сложнее достичь состояния «блаженства». Таким образом, организм требует все большую дозу наркотических веществ, развивая при этом зависимость.

Нервная ткань - основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки - нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон - это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний - .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков - нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации . Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в, эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 - микротрубочки; 2 - длинный отросток нервной клетки (аксон); 3 - эндоплазматический ретикулум; 4 - ядро; 5 - нейроплазма; 6 - дендриты; 7 - митохондрии; 8 - ядрышко; 9 - миелиновая оболочка; 10 - перехват Ранвье; 11 - окончание аксона

Нейроглия

Нейроглия , или глия , - совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру. Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими. Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг, и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току . Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом . В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей.

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков - аксона и дендритов.


Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных, рецепторов, наличием на ней.

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие - встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них - генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа - направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение - аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье - микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов. Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки - центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых. Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов - в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг . Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).


Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП - синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП - синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие - в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных - уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.


Рис. 5. Пространственная и временная суммация ВПСП нейроном; а - BПСП на одиночный стимул; и - ВПСП на множественную стимуляцию от разных афферентов; в - ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности . С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя - к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй - образует аксоном синапс на теле первого нейрона. Локальные могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.


Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.


Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны ? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это — действия нейронов. Как мы понимаем, что это холодное, а это — горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны. В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя

Нейронная пластичность: CogniFit («КогниФит»)

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз) : В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости — с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического прямо сейчас!

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны — это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в гиппокампе также меняется, благодаря нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

В статье есть ссылки на другие материалы, в которых можно подробнее прочитать информацию по той или иной теме. Если вам интересна тема Нейрогенеза, рекомендую также прочитать вот эту интересную статью о том, .Французский