Что быстрее скорости света. Возможен ли сверхсветовой полёт

Но оказалось, что можно; теперь считают, что мы никогда не сомжем путешествовать быстрее света... ". Но на самом деле это неправда, что кто-то когда-то считал, что двигаться быстрее звука невозможно. Задолго до того, как появились сверхзвуковые самолеты уже было известно, что быстрее звука летят пули. Реально же речь шла о том, что невозможен управляемый сверхзвуковой полет, и ошибка была в этом. СС движение - это совсем другое дело. С самого начала было ясно, что сверхзвуковому полету препятствуют технические проблемы, которые надо было просто решить. Но совершенно неясно, можно ли когда-нибудь будет решить проблемы, препятствующие СС движению. Теор ия относительности может много чего сказать на этот счет. Если будет возможно СС путешествие или даже передача сигнала, то будет нарушена причинность, а из этого последуют совершенно невероятные выводы.

Сначала мы обсудим простые случаи СС движения. Мы упоминаем их не потому, что они интересны, а потому, что они снова и снова всплывают в обсуждениях СС движения и потому с ними приходится иметь дело. Потом мы обсудим то, что мы считаем сложными случаями СС движения или общения и рассмотрим некоторые доводы против них. Наконец, мы рассмотрим наиболее серьезные предположения о настоящем СС движении.

Простое СС движение

1. Явление черенковского излучения

Один способ двигаться быстрее света состоит в том, чтобы сперва замедлить сам свет! :-) В вакууме свет летит со скоростью c , и эта величина является мировой постоянной (см. вопрос Постоянна ли скорость света), а в более плотной среде вроде воды или стекла - замедляется до скорости c/n , где n - это показатель преломления среды (1,0003 у воздуха; 1,4 у воды). Поэтому частицы могут двигаться в воде или воздухе быстрее, чем там движется свет. В результате возникает излучение Вавилова-Черенкова (см. вопрос ).

Но когда мы говорим о СС движении, мы, конечно, имеем в виду превышение над скоростью света в вакууме c (299 792 458 м/с). Поэтому явление Черенкова не может считаться примером СС движения.

2. С третьей стороны

Если ракета А летит от меня со скоростью 0,6c на запад, а другая Б - от меня со скоростью 0,6c на восток, то тогда общее расстояние между А и Б в моей системе отсчета увеличивается со скоростью 1,2c . Таким образом, видимая относительная скорость, большая c, может наблюдаться "с третьей стороны".

Однако такая скорость - это не то, что мы обычно понимаем под относительной скоростью. Настоящая скорость ракеты А относительно ракеты Б - это та скорость роста расстояния между ракетами, которую наблюдает наблюдатель в ракете Б . Две скорости надо сложить по релятиви стской формуле сложения скоростей (см. вопрос Как надо складывать скорости в частной относительности). В данном случае относительная скорость получается примерно 0,88c , то есть, не является сверхсветовой.

3. Тени и зайчики

Подумайте, с какой скоростью может двигаться тень? Если Вы создадите на далекой стене тень от своего пальца от близкой лампы, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если палец будет смещаться параллельно стене, то скорость тени будет в D/d раз больше скорости пальца, где d - расстояние от пальца до лампы, а D - расстояние от лампы до стены. А может получиться и еще большая скорость, если стена будет расположена под углом. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и зайчики, например, пятнышко от лазерного луча, направленного на Луну . Зная, что расстояние до Луны 385 000 км., попробуйте рассчитать скорость движения зайчика если слегка поводить лазером. Еще можете подумать о морской волне, косо ударяющей о берег. С какой скоростью может двигаться точка, в которй волна разбивается?

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность, то создается световое кольцо, увеличивающееся быстрее скорости света. В природе такое встречается, когда электромагнитный импульс от молнии достигает верхних слоев атмосферы .

Все это были примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать СС сообщение, так что и общение быстрее света не получается. И опять-таки, это, видимо, не то, что мы хотим понимать под СС движением, хотя становится понятно, насколько трудно определить, что именно нам нужно (см. вопрос Сверхсветовые ножницы).

4. Твердые тела

Если взять длинную твердую палку и толкнуть один ее конец, задвигается ли другой конец сразу же, или нет? Нельзя ли таким образом осуществить СС передачу сообщения?

Да, это было бы можно сделать, если бы такие твердые тела существовали. В реальности же влияние удара по концу палки распространяется по ней со скоростью звука в данном веществе, а скорость звука зависит от упругости и плотности материала. Относительность накладывает абсолютный предел возможной твердости любых тел так, что скорость звука в них не может превышать c .

То же самое происходит и в случае, если вы нахидитесь в поле притяжения, и сначала держите вертикально струну или шест за верхний конец, а потом отпускаете его. Точка, которую вы отпустили, придет в движение сразу, а нижний конец не сможет начать падать до тех пор, пока до него со скоростью звука не дойдет влияние отпускания.

Сложно сформулировать общую теор ию упругих материалов в рамках относительности, но основную идею можно показать и на примере механики Ньютона . Уравнение продольного движения идеально упругого тела можно получить из закона Гука . В переменных массы на единицу длины p и модуля упругости Юнга Y , продольное смещение X удовлетворяет волновому уравнению.

Решение в виде плоских волн двигается со скоростью звука s , причем s 2 = Y/p . Данное уравнение не предполагает возможность причинностного влияния, распространяющегося быстрее s . Таким образом, относительность накладывает теор етический предел на величину упругости: Y < pc 2 . Практически же не встречаются материалы, даже близко подходящие к нему. Кстати, даже если скорость звука в материале близка к c , вещество само по себе вовсе не обязано двигаться с релятиви стской скоростью. Но откуда мы знаем, что в принципе не может существовать вещества, преодолевающего этот предел? Ответ заключается в том, что все вещества состоят из частиц, взаимодействие между которыми подчиняется стандартной модели элементарных частиц, а в этой модели никакое взаимодействие распространяться быстрее света не может (смотри ниже насчет квантовой теор ии поля).

5. Фазовая скорость

Посмотрите на это волновое уравнение:

У него есть решения вида:

Эти решения есть синусоидальные волны, движущиеся со скоростью,

Но ведь это быстрее света, значит у нас в руках уравнение тахионного поля? Нет, это всего лишь обычное релятиви стское уравнение массивной скалярной частицы!

Парадокс разрешится, если понять различие между этой скоростью, называемой также фазовой скоростью v ph от другой скорости, называемой групповой v gr которая датеся формулой,

Если у волнового решения есть разброс частот, то оно приобретет вид волнового пакета , который движется с групповой сокростью, не превышающей c . Только гребни волны движутся с фазовой скоростью. Передавать информацию при помощи такой волны можно лишь с групповой скоростью, так что фазовая скорость дает нам очередной пример сверхсветовой скорости, которая не может переносить информацию.

7. Релятиви стская ракета

Диспетчер на Земле следит за космическим кораблем, улетающим со скоростью 0,8c . Согласно теор ии относительности, даже после учета допплеровского сдвига сигналов от корабля, он увидит, что время на корабле замедлено и часы там идут медленнее с коэффициентом 0,6. Если он рассчитает частное от деления расстояния, пройденного кораблем на затраченное время, измеренное по часам корабля, то он получит 4/3c . Это означает, что пассажиры корабля преодолевают межзвездное пространство с эффективной скоростью, большей, чем скорость света, которую они бы получили, если бы ее измерили. С точки зрения пассажиров корабля, межзвездные расстояния подвержены лоренцеву сокращению с тем же коэффициентом 0,6 и значит, они тоже должны признать, что они покрывают известные межзвездные расстояния со скоростью 4/3 c .

Это реальное явление и оно в принципе может быть использовано космическими путешественниками для преодоления огромных расстояний в течение жизни. Если они будут ускоряться с постоянным ускорением, равным ускорению свободного падения на Земле , то у них на корабле будет не только идеальная искусственная сила тяжести , но они еще успеют пересечь Галактику всего за 12 своих лет! (см. вопрос Каковы уравнения релятиви стской ракеты ?)

Однако, и это - не настоящее СС движение. Эффективная скорость вычислена из расстояния в одной системе отсчета, а времени - в другой. Это не настоящая скорость. Только пассажиры корабля получают преимущества от этой скорости. Диспечер же, например, не успеет за свою жизнь увидеть, как они пролетят гигантское расстояние.

Сложные случаи СС движения

9. Парадокс Эйнштейна, Подольского, Розена (ЭПР)

10. Виртуальные фотоны

11. Квантовое туннелирование

Реальные кандидаты в СС путешественники

В данном разделе приведены умозрительные, но серьезные предположения о возможности сверхсветового путешествия. Это будут не те вещи, которые обычно помещают в ЧаВо, так как они вызывают больше вопросов, чем дают ответов. Они приведены здесь в основном для того, чтобы показать, что в данном направлении проводятся серьезные исследования. В каждом направлении дается лишь краткое введение. Более подробные сведения можно почерпнуть на просторах интернета.

19. Тахионы

Тахионы - это гипотетические частицы, которые локально движутся быстрее света. Чтобы это делать, у них должна быть масса, измеряемая мнимым числом, но их энерги я и импульс должны быть положительными. Иногда думают, что такие СС частицы должно быть невозможно засечь, но на самом деле, причин так считать нет. Тени и зайчики подсказывают нам, что из СС движения еще не следует незаметность.

Тахионы никогда не наблюдались и большинство физиков сомневаются в их существовании. Как-то заявлялось, что проведены опыты по измерению массы нейтрино, вылетающих при распаде Трития, и что эти нейтрино были тахионными. Это весьма сомнительно, но все-таки не исключено. В тахионных теор иях есть проблемы, так как с точки зрения возможных нарушений причинности, они дестабилизируют вакуум. Может и можно эти проблемы обойти, но тогда окажется невозможно применять тахионы в нужном нам СС сообщении.

Правда состоит в том, что большинство физиков считают тахионы признаком ошибки в полевых теор их, а интерес к ним со стороны широких масс подогревается, в основном, со стороны научной фантастики (см. статью Тахионы).

20. Чревоточины

Наиболее известной предположительной возможностью СС путешествия является использование чревоточин. Чревоточины - это туннели в пространстве-времени, соединяющие одно место во Вселенной, с другим. По ним можно переместиться между этими точками быстрее, чем сделал бы свет своим обычным путем. Чревоточины - это явление классической общей относительности, но чтобы их создать, нужно изменить топологию пространства-времени. Возможность этого может быть заключено в теор ии квантовой гравитации.

Чтобы поддерживать чревоточины в открытом состоянии, нужны огромные количества отрицательной энерги и. Миснер и Торн предложили, что для генерации отрицательной энерги и можно использовать крупномасштабный эффект Казимира, а Виссер предложил решение с использованием космических струн. Все эти идеи весьма умозрительны и могут быть попросту нереальными. Необычное вещество с отрицательной энерги ей может не существовать в нужной для явления форме.

Торн обнаружил, что если чревоточины можно создать, то с их помощью можно организовать замкнутые временные петли, которые сделают возможными путешествия во времени. Также было сделано предположение, что многовариантная интерпретация квантовой механики свидетельствует о том, что никаких парадоксов путешествие во времени не вызовет, и что события просто развернутся иначе, когда вы попадете в прошлое. Хокинг говорит, что чревоточины могут просто нестабильными и потому неприменимыми на практике. Но сама тема остается плодотворной областью для мысленных экспериментов, позволяющих разобраться, что возможно и что не возможно исходя и известных и предполагаемых законов физики.
refs:
W. G. Morris and K. S. Thorne, American Journal of Physics 56 , 395-412 (1988)
W. G. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61 , 1446-9 (1988)
Matt Visser, Physical Review D39 , 3182-4 (1989)
see also "Black Holes and Time Warps" Kip Thorn, Norton & co. (1994)
For an explanation of the multiverse see, "The Fabric of Reality" David Deutsch, Penguin Press.

21. Двигатели-деформаторы

[Понятие не имею, как это перевести! В оригинале warp drive. - прим. переводчика;
перевёл по аналогии со статьей на Мембране
]

Деформатор мог бы быть механизмом для закручивания пространства-времени таким образом, чтобы объект мог перемещаться быстрее света. Мигель Алькабьер сделался знаменитым благодаря тому, что разработал геометрию, которая описывает такой деформатор. Искажение пространства-времени делает возможным для объекта перемещаться быстрее света, оставаясь на время-подобной кривой. Препятствия те же, что и при создании чревоточин. Чтобы создать деформатор, нужно вещество с отрицательной плотностью энерги и. Даже если такое вещество возможно, все равно непонятно, как его можно получить и как с его помощью заставить работать деформатор.
ref M. Alcubierre, Classical and Quantum Gravity, 11 , L73-L77, (1994)

Заключение

Во-первых, оказалось нелегко вообще определить, что значит СС путешествие и СС сообщение. Многие вещи, навроде теней, совершают СС дивжение, но так, что его нельзя использовать, например, для передачи информации. Но есть и серьезные возможности реального СС перемещения, которые предложены в научной литературе, но их реализация пока невозможна технически. Принцип неопределенности Гейзенберга делает невозможным использование кажущегося СС движения в квантовой механике. В общей относительности есть потенциал ьные средства СС движения, но их может быть невозможно использовать. Думается, что крайне маловероятно, что в обозримом будущем, или вообще, техника окажется способна создавать космические корабли с СС двигателями, но любопытно, что теор етическая физика, как мы ее сейчас знаем, не закрывает дверь для СС движения насовсем. СС движение в стиле научно-фантастических романов, видимо, совершенно невозможно. Для физиков интересен вопрос: "а почему, собственно, это невозможно, и чему из этого можно научиться?"

Cкорость распространения света равна 299 792 458 метров в секунду, но предельной величиной она давно уже не является. «Футурист» собрал 4 теории, где свет уже не Михаэль Шумахер.

Американский ученый японского происхождения, специалист в области теоретической физики Митио Каку уверен, что скорость света вполне может быть преодолена.

Большой взрыв


Самым известным примером, когда был преодолен световой барьер, Митио Каку называет Большой взрыв - сверхбыстрый «хлопок», ставший началом расширения Вселенной, до которого она находилась в сингулярном состоянии.

«Ни один материальный объект не может преодолеть световой барьер. Но пустое пространство, безусловно, может двигаться быстрее света. Ничто не может быть более пустым, чем вакуум, значит он может расширяться быстрее скорости света», -– уверен ученый.

Фонарик в ночном небе

Если светить фонарем в ночном небе, то в принципе луч, который идет из одной части Вселенной в другую, находящуюся на расстоянии многих световых лет, может двигаться быстрее скорости света. Проблема в том, что в этом случае не будет материального объекта, который действительно движется быстрее света. Представьте, что вы окружены гигантской сферой диаметром один световой год. Изображение луча света промчится по этой сфере за считанные секунды, несмотря на ее размеры. Но только изображение луча может двигаться по ночному небу быстрее света, а не информация или материальный объект.

Квантовая запутанность


Быстрее скорости света может быть не какой-то объект, а целое явление, а точнее взаимосвязь, которая называется квантовой запутанностью. Это квантовомеханическое явление, при котором квантовые состояния двух или нескольких объектов взаимозависимы. Чтобы получить пару квантовозапутанных фотонов, можно посветить на нелинейный кристалл лазером с определенными частотой и интенсивностью. В результате рассеивания лазерного луча, возникнут фотоны в двух разных конусах поляризации, связь между которыми и будет называться квантовой запутанностью. Итак, квантовая запутанность - это один способов взаимодействия субатомных частиц, и процесс этой связи может происходить быстрее света.

«Если два электрона свести вместе, они будут вибрировать в унисон, в соответствии с квантовой теорией. Но если затем разделить эти электроны множеством световых лет, они все равно будут поддерживать связь друг с другом. Если покачнуть один электрон, другой почувствует эту вибрацию, причем произойдет это быстрее скорости света. Альберт Эйнштейн думал, что это явление опровергнет квантовую теорию, потому что ничто не может двигаться быстрее света, но на самом деле он ошибался», -– говорит Митио Каку.

Кротовые норы

Тема преодоления скорости света обыгрывается во многих научно-фантастических фильмах. Сейчас даже у тех, кто далек от астрофизики, на слуху словосочетание «кротовая нора», благодаря фильму «Интерстеллар». Это особое искривление в системе пространство-время, туннель в пространстве, позволяющий преодолевать огромные расстояния за ничтожно малое время.

О таких искривлениях говорят не только сценаристы фильмов, но и ученые. Митио Каку считает, что кротовая нора (wormhole), или, как ее еще называют, червоточина - один из двух наиболее реальных способов передавать информацию быстрее, чем со скоростью света.

Второй способ, связанный также с изменениями материи - сжатие пространства впереди вас и расширение позади. В этом деформированном пространстве возникает волна, которая движется быстрее скорости света, если управляется темной материей.

Таким образом, единственный реальный шанс для человека научиться преодолевать световой барьер может скрываться в общей теории относительности и искривлении пространства и времени. Однако все упирается в ту самую темную материю: никто так и не знает, существует ли она точно, и стабильны ли кротовые норы.

Со школьной скамьи нас учили - превысить скорость света невозможно, и поэтому перемещение человека в космическом пространстве является большой неразрешимой проблемой (как долететь до ближайшей солнечной системы, если свет сможет преодолеть это расстояние только за несколько тысяч лет?). Возможно, американские ученые нашли способ летать на сверхскоростях, не только не обманув, но и следуя фундаментальным законам Альберта Эйнштейна. Во всяком случае так утверждает автор проекта двигателя деформации пространства Гарольд Уайт.

Мы в редакции сочли новость совершенно фантастической, поэтому сегодня, в преддверии Дня космонавтики, публикуем репортаж Константина Какаеса для журнала Popular Science о феноменальном проекте NASA, в случае успеха которого человек сможет отправиться за пределы Солнечной системы.

В сентябре 2012 года несколько сотен ученых, инженеров и космических энтузиастов собрались вместе для второй публичной встречи группы под названием 100 Year Starship. Группой руководит бывший астронавт Май Джемисон, и основана она DARPA. Цель конференции - «сделать возможным путешествие человека за пределы Солнечной системы к другим звездам в течение ближайших ста лет». Большинство участников конференции признают, что подвижки в пилотируемом изучении космического пространства слишком незначительны. Несмотря на миллиарды долларов, затраченных в последние несколько кварталов, космические агентства могут почти столько же, сколько могли в 1960-х. Собственно, 100 Year Starship созвана, чтобы все это исправить.

Но ближе к делу. Спустя несколько дней конференции ее участники дошли до самых фантастических тем: регенерация органов, проблема организованной религии на борту корабля и так далее. Одна из наиболее любопытных презентаций на собрании 100 Year Starship называлась «Механика деформационного поля 102», и провел ее Гарольд «Сонни» Уайт из NASA. Ветеран агентства, Уайт руководит продвинутой импульсной программой в космическом центре Джонсона (JSC). Вместе с пятью коллегами он создал «Дорожную карту космических двигательных систем», которая озвучивает цели NASA в ближайших космических путешествиях. На плане перечисляются все виды двигательных проектов: от усовершенствованных химических ракет до далеко идущих разработок, вроде антиматерии или ядерных машин. Но область исследований Уайта самая футуристичная из всех: она касается двигателя деформации пространства.

так обычно изображают пузырь Алькубьерре

Согласно плану, такой двигатель обеспечит перемещения в пространстве со скоростью, превышающей скорость света. Общепризнанно, что это невозможно, поскольку является явным нарушением теории относительности Эйнштейна. Но Уайт утверждает обратное. В качестве подтверждения своих слов он апеллирует к так называемым пузырям Алькубьерре (уравнения, выходящие из теории Эйнштейна, согласно которым тело в космическом пространстве способно достигать сверхсветовых скоростей, в отличие от тела в нормальных условиях). В презентации он рассказал, как недавно сумел добиться теоретических результатов, которые напрямую ведут к созданию реального двигателя деформации пространства.

Понятно, что звучит это все совершенно фантастически: подобные разработки - это настоящая революция, которая развяжет руки всем астрофизикам мира. Вместо того, чтобы тратить 75 тысяч лет на путешествие к Альфа-Центавре, ближайшей к нашей звездной системе, астронавты на корабле с таким двигателем смогут совершить это путешествие за пару недель.


В свете закрытия программы запуска шаттлов и все возрастающей роли частных полетов к околоземной орбите NASA заявляет, что переориентируется на далекоидущие, намного более смелые планы, выходящие далеко за рамки путешествий на Луну. Достичь этих целей можно только с помощью развития новых двигательных систем - чем быстрее, тем лучше. Несколько дней спустя после конференции глава NASA Чарльз Болден, повторил слова Уайта: «Мы хотим перемещаться быстрее скорости света и без остановок на Марсе».

ОТКУДА МЫ ЗНАЕМ ПРО ЭТОТ ДВИГАТЕЛЬ

Первое популярное использование выражения «двигатель деформации пространства» датируется 1966 годом, когда Джен Родденберри выпустил «Звездный путь». Следующие 30 лет этот двигатель существовал только как часть этого фантастического сериала. Физик по имени Мигель Алькубьерре посмотрел один из эпизодов этого сериала как раз в тот момент, когда трудился над докторской в области общей теории относительности и задавался вопросом, возможно ли создание двигателя деформации пространства в реальности. В 1994 году он опубликовал документ, излагающий эту позицию.


Алькубьерре представил в космосе пузырь. В передней части пузыря время-пространство сокращается, а в задней - расширяется (как было при Большом взрыве, по мнению физиков). Деформация заставит корабль гладко скользить в космическом пространстве, как если бы он серфил на волне, несмотря на окружающий шум. В принципе деформированный пузырь может двигаться сколько угодно быстро; ограничения в скорости света, по теории Эйнштейна, распространяются только в контексте пространства-времени, но не в таких искажениях пространства-времени. Внутри пузыря, как предполагал Алькубьерре, пространство-время не изменится, а космическим путешественникам не будет нанесено никакого вреда.

Уравнения Эйнштейна в общей теории относительности сложно решить в одном направлении, выясняя, как материя искривляет пространство, но это осуществимо. Используя их, Алькубьерре определил, что распределение материи есть необходимое условие для создания деформированного пузыря. Проблема только в том, что решения приводили к неопределенной форме материи под названием отрицательная энергия.

Говоря простым языком, гравитация - это сила притяжения между двумя объектами. Каждый объект вне зависимости от его размеров оказывает некоторую силу притяжения на окружающую материю. По мнению Эйнштейна, эта сила является искривлением пространства-времени. Отрицательная энергия, однако, гравитационно отрицательна, то есть отталкивающа. Вместо того чтобы соединять время и пространство, отрицательная энергия отталкивает и разобщает их. Грубо говоря, чтобы такая модель работала, Алькубьерре необходима отрицательная энергия, чтобы расширять пространство-время позади корабля.

Несмотря на то, что никто и никогда особенно не измерял отрицательную энергию, согласно квантовой механике, она существует, а ученые научились создавать ее в лабораторных условиях. Один из способов ее воссоздания - через Казимиров эффект: две параллельно проводящие пластины, расположенные близко друг к другу, создают некоторое количество отрицательной энергии. Слабое место модели Алькубьерре в том, что для ее осуществления требуется огромное количество отрицательной энергии, на несколько порядков выше, чем, по оценкам ученых, ее можно произвести.

Уайт говорит, что он нашел, как пойти в обход этого ограничения. В компьютерном симуляторе Уайт изменил геометрию деформационного поля так, что в теории он мог бы производить деформированный пузырь, используя в миллионы раз меньше отрицательной энергии, чем требовалось по оценкам Алькубьерра, и, возможно, достаточно мало, чтобы космический корабль мог нести средства его производства. «Открытия, - говорит Уайт, - меняют метод Алькубьерре с непрактичного на вполне правдоподобный».

РЕПОРТАЖ ИЗ ЛАБОРАТОРИИ УАЙТА

Космический центр Джонсона расположился рядом с лагунами Хьюстона, откуда открывается путь к заливу Гальвестон. Центр немного напоминает пригородный кампус колледжа, только направленный на подготовку астронавтов. В день моего посещения Уайт встречает меня в здании 15, многоэтажном лабиринте коридоров, офисов и лабораторий, в которых проводятся испытания двигателя. На Уайте рубашка поло с эмблемой Eagleworks (так он называет свои эксперименты по созданию двигателя), на которой вышит орел, парящий над футуристическим космическим кораблем.


Уайт начинал свою карьеру с работы инженером - проводил исследования в составе роботической группы. Со временем он взял на себя командование всем крылом, занимающимся роботами на МКС, одновременно заканчивая писать докторскую в области физики плазмы. Только в 2009-м он сменил свои интересы на изучение движения, и эта тема захватила его настолько, что стала основной причиной, по которой он отправился работать на NASA.

«Он довольно необычный человек, - говорит его босс Джон Эпплуайт, возглавляющий отделение двигательных систем. - Он совершенно точно большой фантазер, но одновременно и талантливый инженер. Он умеет превращать свои фантазии в реальный инженерный продукт». Примерно в то же время, когда он присоединился к NASA, Уайт попросил разрешения открыть собственную лабораторию, посвященную продвинутым двигательным системам. Он сам и придумал название Eagleworks и даже попросил NASA создать логотип для его специализации. Тогда и началась эта работа.

Уайт ведет меня к своему офису, который делит с коллегой, занимающимся поисками воды на Луне, а после ведет вниз к Eagleworks. На ходу он рассказывает мне про свою просьбу открыть лабораторию и называет это «долгим трудным процессом поиска продвинутого движения, чтобы помочь человеку исследовать космос».

Уайт демонстрирует мне объект и показывает его центральную функцию - нечто, что он называет «квантовый вакуумный плазменный двигатель» (QVPT). Это приспособление внешне похоже на огромный красный бархатный пончик с проводами, плотно оплетающими сердцевину. Это одна из двух инициатив Eagleworks (вторая - деформационный двигатель). Еще это секретная разработка. Когда я спрашиваю, что это, Уайт отвечает, что может сказать только, что эта технология даже круче, чем деформационный двигатель). Согласно отчету NASA за 2011 год, написанному Уайтом, аппарат использует квантовые флуктации в пустом пространстве в качестве источника топлива, а значит, космический корабль, приводимый в движение QVPT, не требует топлива.


Двигатель использует квантовые флуктации в пустом пространстве в качестве источника топлива,
а значит, космический корабль,
приводимый в движение QVPT, не требует топлива.

Когда девайс работает, система Уайта выглядит кинематографически идеально: цвет лазера красный, и два луча скрещены, как сабли. Внутри кольца находятся четыре керамических конденсатора, сделанных из титаната бария, который Уайт заряжает до 23 тысяч вольт. Уайт провел последние два с половиной года, разрабатывая эксперимент, и он говорит, что конденсаторы демонстрируют огромную потенциальную энергию. Однако, когда я спрашиваю, как создать отрицательную энергию, необходимую для деформированного пространства-времени, он уклоняется от ответа. Он объясняет, что подписал соглашение о неразглашении, и потому не может раскрывать подробности. Я спрашиваю, с кем он заключал эти соглашения. Он говорит: «С людьми. Они приходят и хотят поговорить. Больше подробностей я вам сообщить не могу».

ПРОТИВНИКИ ИДЕИ ДВИГАТЕЛЯ

Пока что теория деформированного путешествия довольно интуитивна - деформация времени и пространства, чтобы создать движущийся пузырь, - и в ней есть несколько значительных недостатков. Даже если Уайт значительно уменьшит количество отрицательной энергии, запрашиваемой Алькубьерре, ее все равно потребуется больше, чем способны произвести ученые, заявляет Лоуренс Форд, физик-теоретик в университете Тафтс, за последние 30 лет написавший множество статей на тему отрицательной энергии. Форд и другие физики заявляют, что есть фундаментальные физические ограничения, причем дело не столько в инженерных несовершенствах, сколько в том, что такое количество отрицательной энергии не может существовать в одном месте длительное время.

Другая сложность: для создания деформационного шара, который двигается быстрее света, ученым потребуется произвести отрицательную энергию вокруг космического корабля и в том числе над ним. Уайт не считает, что это проблема; он весьма туманно отвечает, что двигатель, скорее всего, будет работать благодаря некоему имеющемуся «аппарату, который создает необходимые условия». Однако создание этих условий перед кораблем будет означать обеспечение постоянной поставки отрицательной энергии, перемещаемой быстрей скорости света, что снова противоречит общей теории относительности.

Наконец, двигатель деформации пространства ставит концептуальный вопрос. В общей теории относительности путешествие на сверхсветовой скорости эквивалентно путешествию во времени. Если такой двигатель реален, Уайт создает машину времени.

Эти препятствия рождают некоторые серьезные сомнения. «Не думаю, что известная нам физика и ее законы позволяют допустить, что он чего-то добьется своими экспериментами», - говорит Кен Олум, физик из университета Тафтс, который также участвовал в дебатах насчет экзотического движения на собрании «100-летия звездного корабля». Ноа Грэхам, физик из колледжа Миддлбёри, читавший две работы Уайта по моей просьбе, написал мне e-mail: «Не вижу ценных научных доказательств, помимо отсылок к его предыдущим работам».

Алькубьерре, ныне физик в Национальном автономном университете Мексики, и сам высказывает сомнение. «Даже если я стою на космическом корабле и у меня есть в наличии отрицательная энергия, мне ни за что не поместить ее туда, куда требуется, - говорит он мне по телефону из своего дома в Мехико. - Нет, идея-то волшебная, мне нравится, я же ее сам и написал. Но в ней есть пара серьезных недостатков, которые я уже сейчас, с годами, вижу, и я не знаю ни единого способа их исправить».

БУДУЩЕЕ СВЕРХСКОРОСТЕЙ

Слева от главных ворот Джонсонского научного центра лежит на боку ракета «Сатурн-В», ее ступени разъединены для демонстрации внутреннего содержимого. Он гигантский - размер одного из множества двигателей равен размеру маленького автомобиля, а сама ракета на пару футов длиннее, чем футбольное поле. Это, конечно, вполне красноречивое свидетельство особенностей космического плавания. Кроме того, ей 40 лет, и время, которое она представляет - когда NASA было частью огромного национального плана по отправлению человека не Луну, - давно прошло. Сегодня JSC - это просто место, которое когда-то было великим, но с тех пор покинуло космический авангард.

Прорыв в движении может означать новую эру для JSC и NASA, и в какой-то степени часть этой эры начинается уже сейчас. Зонд Dawn («Рассвет»), запущенный в 2007-м, изучает кольцо астероидов при помощи ионных двигателей. В 2010-м японцы ввели в эксплуатацию «Икар», первый межпланетный звездный корабль, приводимый в движение солнечным парусом, еще один вид экспериментального движения. И в 2016-м ученые планируют испытать VASMIR, систему, работающую на плазме, сделанную специально для высокой двигательной тяги в ISS. Но когда эти системы, возможно, доставят астронавтов на Марс, они все еще не будут способны забросить их за пределы Солнечной системы. Чтобы добиться этого, по словам Уайта, NASA потребуется пойти на более рискованные проекты.


Деформационный двигатель - возможно, самое притянутое за уши из насовских усилий по созданию проектов движения. Научное сообщество заявляет, что Уайт не может создать его. Эксперты заявляют, что он работает против законов природы и физики. Несмотря на это, за проектом стоит NASA. «Его субсидируют не на том высоком государственном уровне, на котором должны были бы, - говорит Апплуайт. - Я думаю, что у дирекции есть какой-то особенный интерес в том, чтобы он продолжал свою работу; это одна из тех теоретических концепций, в случае успехов которых игра меняется полностью».

В январе Уайт собрал свой деформационный интерферометр и двинулся к следующей цели. Eagleworks перерос собственный дом. Новая лаборатория больше и, как он заявляет с энтузиазмом, «сейсмически изолирована», имея в виду, что он защищен от колебаний. Но, возможно, лучшее в новой лаборатории (и самое впечатляющее) - то, что NASA создало Уайту такие же условия, что были у Нила Армстронга и Базза Олдрина на Луне. Что ж, посмотрим.

В (локально) инерциальной системе отсчёта с началом рассмотрим материальную точку, которая в момент времени находится в . Скорость этой точки мы называем сверхсветовой в момент , если выполняется неравенство:

Src="/pictures/wiki/files/50/21ea15551d469cba11529bd16574e427.png" border="0">

где , - это скорость света в вакууме, а время и расстояние от точки до измеряются в упомянутой системе отсчёта.

где - радиус-вектор в невращающейся системе координат, - вектор угловой скорости вращения системы координат. Как видно из уравнения, в неинерциальной системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью , в том смысле, что src="/pictures/wiki/files/54/6fa9a2d9089db2f154c5c90051ce210b.png" border="0">. Это не вступает в противоречие со сказанным во введении, так как . Например, для системы координат связанной с головой человека, находящегося на Земле, координатная скорость движения Луны при обычном повороте головы будет больше скорости света в вакууме. В этой системе при повороте за маленькое время Луна опишет дугу с радиусом приблизительно равным расстоянию между началом системы координат (головой) и Луной.

Фазовая скорость

Фазовая скорость вдоль направления, отклонённого от волнового вектора на угол α. Рассматривается монохроматическая плоская волна.

Труба Красникова

Квантовая механика

Принцип неопределённости в квантовой теории

В квантовой физике состояния частиц описываются векторами гильбертового пространства, которые определяют лишь вероятность получения при измерениях определённых значений физических величин (в соответствии с квантовым принципом неопределённости). Наиболее известно представление этих векторов волновыми функциями , квадрат модуля которых определяет плотность вероятности обнаружения частицы в данном месте. При этом оказывается, что эта плотность может двигаться быстрее скорости света (например, при решении задачи о прохождении частицы через энергетический барьер). При этом эффект превышения скорости света наблюдается только на небольших расстояниях. Ричард Фейнман в своих лекциях выражался об этом так :

… для электромагнитного излучения существует также [ненулевая] амплитуда вероятности двигаться быстрее (или медленнее), чем обычная скорость света. Вы убедились на предыдущей лекции, что свет не всегда двигается только по прямым линиям; сейчас вы увидите, что он не всегда движется со скоростью света! Это может казаться удивительным, что существует [ненулевая] амплитуда для того, чтобы фотон двигался быстрее или медленнее, чем обычная скорость света c

Оригинальный текст (англ.)

… there is also an amplitude for light to go faster (or slower) than the conventional speed of light. You found out in the last lecture that light doesn’t go only in straight lines; now, you find out that it doesn’t go only at the speed of light! It may surprise you that there is an amplitude for a photon to go at speeds faster or slower than the conventional speed, c

Ричард Фейнман, нобелевский лауреат по физике 1965 года.

При этом в силу принципа неразличимости нельзя сказать, ту же ли самую частицу мы наблюдаем, или её новорождённую копию. В своей нобелевской лекции в 2004 году Франк Вилчек привёл следующее рассуждение: :

Представьте себе частицу, двигающуюся в среднем со скоростью, очень близкой к скорости света, но с такой неопределённостью в положении, как этого требует квантовая теория. Очевидно, будет определённая вероятность наблюдать эту частицу двигающейся несколько быстрее, чем в среднем, и, следовательно, быстрее света, что противоречит специальной теории относительности. Единственный известный способ разрешить это противоречие требует привлечения идеи античастиц. Очень грубо говоря, требуемая неопределённость в положении достигается допущением, что акт измерения может затрагивать образование античастиц, каждая из которых неотличима от оригинала, с различными расположениями. Для сохранения баланса сохраняющихся квантовых чисел, дополнительные частицы должны сопровождаться тем же числом античастиц. (Дирак пришёл к предсказанию античастиц через последовательность изобретательных интерпретаций и реинтерпретаций элегантного релятивистского волнового уравнения, которое он вывел, а не через эвристическое рассмотрение, подобное тому, которое я привёл. Неизбежность и всеобщность этих выводов, а также их прямое отношение к базовым принципам квантовой механики и специальной теории относительности стали очевидны только в ретроспективе).

Оригинальный текст (англ.)

Imagine a particle moving on average at very nearly the speed of light, but with an uncertainty in position, as required by quantum theory. Evidently it there will be some probability for observing this particle to move a little faster than average, and therefore faster than light, which special relativity won’t permit. The only known way to resolve this tension involves introducing the idea of antiparticles. Very roughly speaking, the required uncertainty in position is accommodated by allowing for the possibility that the act of measurement can involve the creation of several particles, each indistinguishable from the original, with different positions. To maintain the balance of conserved quantum numbers, the extra particles must be accompanied by an equal number of antiparticles. (Dirac was led to predict the existence of antiparticles through a sequence of ingenious interpretations and re-interpretations of the elegant relativistic wave equation he invented, rather than by heuristic reasoning of the sort I’ve presented. The inevitability and generality of his conclusions, and their direct relationship to basic principles of quantum mechanics and special relativity, are only clear in retrospect).

Франк Вилчек

Эффект Шарнхорста

Скорость волн зависит от свойств среды, в которой они распространяются. Специальная теория относительности утверждает, что разогнать массивное тело до скорости, превышающей скорость света в вакууме, невозможно. В то же время теория не постулирует какое-то конкретное значение для скорости света. Она измеряется экспериментальным путём и может различаться в зависимости от свойств вакуума . Для вакуума, энергия которого меньше энергии обычного физического вакуума , скорость света теоретически должна быть выше , а максимально допустимая скорость передачи сигналов определяется максимально возможной плотностью отрицательной энергии . Одним из примеров такого вакуума является вакуум Казимира , возникающий в тонких щелях и капиллярах размером (диаметром) до десятка нанометров (примерно в сто раз больше размеров типичного атома). Этот эффект можно также объяснить уменьшением количества виртуальных частиц в вакууме Казимира, которые подобно частицам сплошной среды замедляют распространение света. Вычисления, сделанные Шарнхорстом , говорят о превышении скорости света в вакууме Казимира по сравнению с обычным вакуумом на 1/10 24 для щели шириной 1 нм. Было также показано, что превышение скорости света в вакууме Казимира не ведёт к нарушению принципа причинности . Превышение скорости света в вакууме Казимира по сравнению со скоростью света в обычном вакууме экспериментально пока не подтверждено из-за чрезвычайной сложности измерения данного эффекта .

Теории с переменностью скорости света в вакууме

В современной физике существуют гипотезы, согласно которым скорость света в вакууме не является константой, и её значение может изменяться с течением времени (Variable Speed of Light (VSL)) . В наиболее распространенной версии этой гипотезы предполагается, что в начальные этапы жизни нашей вселенной значение константы (скорость света) было значительно больше, чем сейчас. Соответственно, раньше вещество могло двигаться со скоростью, значительно превосходящей современную скорость света.

Теория относительности завораживает своими парадоксами. Все мы знаем про близнецов, про возможности засунуть длинный самолёт в короткий ящик. Сегодня каждый выпускник школы знает ответы на эти классические загадки, а уж студенты-физики и подавно считают, что тайн в специальной теории относительности для них не осталось.

Всё бы хорошо, если бы не удручающе обстоятельство - невозможность сверхсветовых скоростей. Неужели никак нельзя быстрее?! - думала я в детстве. А может быть можно?! Поэтому приглашаю вас на сеанс, уж и не знаю, чёрной или белой магии имени Альберта Эйнштейна с разоблачением в конце. Впрочем для тех, кому покажется мало, я приготовила ещё и задачку.

UPD: Сутки спустя публикую решение. Много текста формул, графиков в конце.

К Альфе Центавра

Приглашаю вас занять места в нашем межзвёздном корабле, который направляется в сторону Альфы Центавра. От конечной точки маршрута нас отдаляют 4 световых года. Внимание, запускаем двигатели. Поехали! Для удобства пассажиров наш капитан установил такую тягу, чтобы мы ускорялись с величиной и ощущали привычную нам на Земле силу тяжести.

Вот мы уже прилично разогнались, пускай до половины скорости света . Зададим казалось несложный вопрос: с какой же скоростью мы будем приближаться к Альфа Центавра в нашей собственной (корабельной) системе отсчёта. Казалось бы всё просто, если мы летим со скоростью в неподвижной системе отсчёта Земли и Альфы Центавра, то и с нашей точки зрения мы приближаемся к цели со скоростью .

Тот, кто уже почувствовал подвох, совершенно прав. Ответ неверен! Тут надо сделать уточнение, под скоростью приближения к Альфа Центавра я называю изменение оставшегося расстояния до неё, делённое на промежуток времени, за который такое изменение произошло. Всё, разумеется, измеряется в нашей системе отсчёта, связанной с космическим кораблём.

Тут надо вспомнить, о лоренцевском сокращении длины. Ведь разогнавшись до половины скорости света мы обнаружим, что масштаб вдоль направления нашего движения сжался. Напомню формулу:

И теперь, если на скорости в половину скорости света мы измерим расстояние от Земли до Альфы Центавра, мы получил не 4 св. года, а всего лишь 3,46 св.года.

Получается, что только благодаря тому факту, что мы разогнались до мы уже уменьшили расстояние до конечной точки путешествия почти 0,54 св.года. А если мы будем не просто двигаться с большой скоростью, но ещё и ускоряться, то у масштабного фактора появится производная по времени, которая по сути тоже есть скорость приближения и плюсуется к .

Таким образом помимо к нашей обычной, я бы сказала классической, скорости добавляется ещё один член - динамическое сокращение длины оставшегося пути, которое возникает тогда и только тогда, когда есть ненулевое ускорение. Ну что же, возьмём карандаш и посчитаем.

А тех, кому лень следить за вычислениями встречаю на другом берегу спойлера

Текущее расстояние до звезды по линейке капитана корабля, - время на часах в кают-компании, - скорость.

Уже здесь мы видим, что первая частная производная - это скорость, просто скорость со знаком минус, коль скоро мы приближаемся к Альфе Центавра. А вот второе слагаемое - тот самый подвох, о котором, подозреваю, не все задумывались.

Чтобы найти производную скорости по времени во втором слагаемом, надо быть аккуратным, т.к. мы находимся в подвижной системе отсчёта. Проще всего на пальцах её вычислить из формулы сложения релятивистских скоростей. Пусть в момент времени мы движемся со скоростью , а через какой-то промежуток времени прирастили нашу скорость на . Результирующая скорость по формуле теории относительности будет

Теперь соберём вместе (2) и (3), причём производную от (3) надо взять при , т.к. мы рассматриваем малые приращения.



Полюбуемся на конечную формулу

Она удивительна! Если первый член - скорость - ограничен скоростью света, то второй член не ограничен ничем! Возьмите побольше и… второе слагаемое с лёгкостью может превысить .

Что-что! - не поверят некоторые.
- Да-да, именно так, - отвечу я. - Оно может быть больше скорости света, больше двух скоростей света, больше 10 скоростей света. Перефразируя Архимеда, могу сказать: «дайте мне подходящую , и я обеспечу вам сколь угодно большую скорость.»

Что ж а давайте подставим числа, с числами всегда интереснее. Как мы помним, капитан установил ускорение , а скорость уже достигла . Тогда обнаружим, что при светового года, наша скорость приближения сравняется со скоростью света. Если же мы подставим световых года, то

Прописью: «три целых, три десятых скорости света».

Продолжаем удивляться

Давайте посмотрим ещё более внимательно на формулу (5). Ведь не обязательно садиться в релятивистский космический корабль. И скорость, и ускорение могут быть совсем маленькими. Всё дело в волшебной . Вы только вдумайтесь!

Вот я села в машину и нажала на газ. У меня есть скорость и ускорение. И в этот самый момент я могу гарантировать, что где-то примерно сотне-другой миллионов световых лет впереди меня есть объекты, приближающиеся сейчас ко мне быстрее света. Для простоты я ещё не брала в расчёт скорость движения Земли по орбите вокруг Солнца, и Солнца вокруг центра Галактики. С их учётом объекты со сверхсветовой скоростью приближения окажутся уже совсем поблизости - не на космологических масштабах, а где-то на периферии нашей Галактики.

Получается, что невольно даже при минимальных ускорениях, например встав со стула, мы участвуем в сверхсветовом движении.

Удивляемся ещё

Посмотри на формулу (5) совсем-совсем пристально. Давайте узнаем не скорость приближения к Альфе Центавра, а наоборот скорость удаления от Земли. При достаточно большом , например, на полпути к цели, мы можем обнаружить, что к нам приближается и Земля, и Альфа Центавра. Оправившись от удивления, конечно можно догадаться, что виной всему сокращение длины, которое работает не только вперёд, но и назад. Пространство за кормой космического корабля сжимается быстрее, чем мы улетаем от точки старта.

Несложно понять и другой удивительный эффект. Ведь стоит изменить направление ускорения, как второе слагаемое в (5) тут же поменяет знак. Т.е. скорость приближения может запросто стать нулевой, а то и отрицательной. Хотя обычная скоростью у нас по прежнему будет направлена к Альфе Центавра.

Разоблачение

Надеюсь, я вас достаточно сбила с толку. Как же так, нас учили, что скорость света максимальна! Нельзя приближаться к чему-либо быстрее скорости света! Но здесь стоит обратить внимание на присказку к любому релятивистскому закону. Она есть в любом учебнике, но кажется, что только загромождает формулировку, хотя именно в ней вся «соль». Эта присказка гласит, что постулаты специальной теории относительности работают «в инерциальной системе отсчёта».

В неинерциальной системе отсчёта Эйнштейн нам ничего не гарантирует. Такие дела!

Тоже самое, чуть более подробно и чуть более сложно

В формуле (5) содержится расстояние . Когда оно равно нулю, т.е. когда мы пытаемся определить скорость локально относительно близких объектов, останется только первое слагаемое , которое, разумеется, не превышает световую скорость. Никаких проблем. И лишь на больших расстояниях, т.е. не локально, мы можем получить сверхсветовые скорости.

Надо сказать, что вообще говоря, относительная скорость удалённых друг от друга объектов - понятие плохо определённое. Наше плоское пространство-время в ускоренной системе отсчёта выглядит искривлённым. Это знаменитый «лифт Эйнштейна» эквивалентный гравитационному полю. А сравнивать две векторные величины в искривлённом пространстве корректно, только когда они находятся в одной точке (в одном касательном пространстве из соответствующего векторного расслоения).

Кстати о нашем парадоксе сверхсветовой скорости можно рассуждать и по-другому, я бы сказала интегрально. Ведь релятивистское путешествия к Альфе Центавра займёт по собственным часам космонавта гораздо меньше 4 лет, поэтому поделив изначальное расстояние на затраченное собственное время, мы получим эффективную скорость больше скорости света. По сути это тот же парадокс близнецов. Кому удобно, может именно так и понимать сверхсветовое перемещение.

Вот и весь фокус. Ваша Капитанша Очевидность.


А напоследок я придумала вам домашнее задание или наброс для обсуждения в комментариях.

Задачка

Земляне и альфацентавры решили обменяться делегациями. С Земли стартовал космический корабль со скорость . Одновременно с ним с Альфы Центавра навстречу отправилась летающая тарелка инопланетян с той же скоростью.

Каково расстояние между кораблями в системе отсчёта корабля землян в момент старта, когда они находились у Земли и Альфы Центавра соответственно? Напишите ответ в комментариях.

UPD: Решение

Итак решение задачи. Сначала рассмотрим её качественно.

Договоримся, что часы на Альфе, Земле, ракете и тарелке синхронизованы (это было сделано заранее), и старт по всем четырём часам состоялся в 12:00.

Рассмотрим пространство время графически в покоящихся координатах . Земля находится в нуле, Альфа на расстоянии по оси . Мировая линия Альфы Центавра, очевидно, просто идёт вертикально вверх. Мировая линия тарелки идёт с наклоном влево, т.к. она вылетела из точки в направлении Земли.

Теперь на этом графике пририсуем оси координат системы отсчёта ракеты, стартовавшей с Земли. Как известно, такое преобразование системы координат (СК) называется бустом. При этом оси наклоняются симметрично относительно диагональной линии, которая показывает световой луч.

Я думаю, в этот момент вам уже всё стало понятно. Смотрите, ось пересекает мировые линии Альфы и летающей тарелки в разных точках. Что же произошло?

Удивительная вещь. Перед стартом с точки зрения ракеты и тарелка и Альфа находились в одной точке, а после набора скорости выясняется, что в движущеёся СК старт ракеты и тарелки не был одновременен. Тарелка, вдруг оказывается, стартовала раньше и успела немного приблизиться к нам. Поэтому сейчас в 12:00:01 по часам ракеты до тарелки уже ближе, чем до Альфы.

А если ракета разгонится ещё, она «перепрыгнет» в следующую СК, где тарелка ещё ближе. Причём такое приближение тарелки происходит только за счёт ускорения и динамического сжатия продольного масштаба (о чём собственно весь мой пост), а не продвижения ракеты в пространстве, т.к. ракета ещё по сути ничего и не успела пролететь. Это приближение тарелки, как раз и есть второй член в формуле (5).

Ну и кроме всего прочего надо учесть обычное лоренцевское сокращение расстояния. Сразу сообщу ответ, что при скоростях ракеты и тарелки по каждая расстояние

  • между ракетой и Альфой: 3,46 св. года (обычное лоренцевское сокращение)
  • между ракетой и тарелкой: 2,76 св. года

Кому интересно, давайте поколдуем с формулами в четырёхмерном пространстве

Такого рода задачи удобно решать с помощью четырёхмерных векторов. Бояться их не надо, всё делается при помощи самых обычных действий линейной алгебры. Тем более мы движемся только вдоль одной оси, поэтому от четырёх координат остаётся только две: и .

Далее договоримся о простых обозначениях. Скорость света считаем равной единице. Мы, физики, всегда так делаем. :) Ещё обычно единицей считаем постоянную Планка и гравитационную постоянную. Сути это не меняет, зато чертовски облегчает писанину.

Итак повсеместно присутствующий «релятивистский корень» обозначим гамма-фактором для компактности записей, где - скорость земной ракеты:

Теперь запишем в компонентах вектор :

Верхняя компонента - время, нижняя - пространственная координата. Корабли стартуют одновременно в неподвижной системе, поэтому верхняя составляющая вектора равна нулю.

Теперь найдём координаты точки в подвижной системе координат , т.е. . Для этого используем преобразование к движущейся системе отсчёта. Оно называется бустом и делается очень просто. Любой вектор надо умножить на матрицу буста

Умножаем:

Как мы видим, временная компонента этого вектора отрицательна. Это и значит, что точка с точки зрения движущеёся ракеты находится под осью , т.е. в прошлом (что и видно на рисунке выше).

Найдём вектор в неподвижной системе. Временная компонента - некоторый неизвестный пока промежуток времени , пространственная - расстояние, на которое приближается тарелка за время , двигаясь со скоростью :

Теперь тот же самый вектор в системе

Найдём обычную векторную сумму

Почему эту сумму я приравняла справа к таком вектору? По определению точка находится на оси , поэтому временная компонента должна быть равна нулю, а пространственная компонента - это и будет то самое искомое расстояние от ракеты до тарелки. Отсюда получаем систему двух простых уравнений - приравниваем временные компоненты отдельно, пространственные отдельно.

Из первого уравнения определяем неизвестный параметр , подставляем его во второе уравнение и получаем . Позвольте опустить простые вычисления и сразу записать

Подставив , , получаем